ترغب بنشر مسار تعليمي؟ اضغط هنا

Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides

56   0   0.0 ( 0 )
 نشر من قبل Gui-Bin Liu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Monolayer transition metal dichalcogenides (TMDs) offer new opportunities for realizing quantum dots (QDs) in the ultimate two-dimensional (2D) limit. Given the rich control possibilities of electron valley pseudospin discovered in the monolayers, this quantum degree of freedom can be a promising carrier of information for potential quantum spintronics exploiting single electrons in TMD QDs. An outstanding issue is to identify the degree of valley hybridization, due to the QD confinement, which may significantly change the valley physics in QDs from its form in the 2D bulk. Here we perform a systematic study of the intervalley coupling by QD confinement potentials on extended TMD monolayers. We find that the intervalley coupling in such geometry is generically weak due to the vanishing amplitude of the electron wavefunction at the QD boundary, and hence valley hybridization shall be well quenched by the much stronger spin-valley coupling in monolayer TMDs and the QDs can well inherit the valley physics of the 2D bulk. We also discover sensitive dependence of intervalley coupling strength on the central position and the lateral length scales of the confinement potentials, which may possibly allow tuning of intervalley coupling by external controls

قيم البحث

اقرأ أيضاً

87 - Hanan Dery 2016
Exciton optical transitions in transition-metal dichalcogenides offer unique opportunities to study rich many-body physics. Recent experiments in monolayer WSe$_2$ and WS$_2$ have shown that while the low-temperature photoluminescence from neutral ex citons and three-body complexes is suppressed in the presence of elevated electron densities or strong photoexcitation, new dominant peaks emerge in the low-energy side of the spectrum. I present a theory that elucidates the nature of these optical transitions showing the role of the intervalley Coulomb interaction. After deriving a compact dynamical form for the Coulomb potential, I calculate the self-energy of electrons due to their interaction with this potential. For electrons in the upper valleys of the spin-split conduction band, the self energy includes a moderate redshift due to exchange, and most importantly, a correlation-induced virtual state in the band-gap. The latter sheds light on the origin of the luminescence in monolayer WSe$_2$ and WS$_2$ in the presence of pronounced many-body interactions.
The valley degree of freedom is a sought-after quantum number in monolayer transition-metal dichalcogenides. Similar to optical spin orientation in semiconductors, the helicity of absorbed photons can be relayed to the valley (pseudospin) quantum num ber of photoexcited electrons and holes. Also similar to the quantum-mechanical spin, the valley quantum number is not a conserved quantity. Valley depolarization of excitons in monolayer transition-metal dichalcogenides due to long-range electron-hole exchange typically takes a few ps at low temperatures. Exceptions to this behavior are monolayers MoSe$_2$ and MoTe$_2$ wherein the depolarization is much faster. We elucidate the enigmatic anomaly of these materials, finding that it originates from Rashba-induced coupling of the dark and bright exciton branches next to their degeneracy point. When photoexcited excitons scatter during their energy relaxation between states next to the degeneracy region, they reach the light cone after losing the initial helicity. The valley depolarization is not as fast in monolayers WSe$_2$, WS$_2$ and likely MoS$_2$ wherein the Rashba-induced coupling is negligible.
We report charged exciton (trion) formation dynamics in doped monolayer transition metal dichalcogenides (TMDs), specifically molybdenum diselenide (MoSe2), using resonant two-color pump-probe spectroscopy. When resonantly pumping the exciton transit ion, trions are generated on a picosecond timescale through exciton-electron interaction. As the pump energy is tuned from the high energy to low energy side of the inhomogeneously broadened exciton resonance, the trion formation time increases by ~ 50%. This feature can be explained by the existence of both localized and delocalized excitons in a disordered potential and suggests the existence of an exciton mobility edge in TMDs. The quasiparticle formation and conversion processes are important for interpreting photoluminescence and photoconductivity in TMDs.
In this work, we predict the emergence of the valley Edelstein Effect (VEE), which is an electric-field-induced spin polarization effect, in gated monolayer transition metal dichalcogenides (MTMDs). We found an unconventional valley-dependent respons e in which the spin-polarization is parallel to the applied electric field with opposite spin-polarization generated by opposite valleys. This is in sharp contrast to the conventional Edelstein effect in which the induced spin-polarization is perpendicular to the applied electric field. We identify the origin of VEE as combined effects of conventional Edelstein effect and valley-dependent Berry curvatures induced by coexisting Rashba and Ising SOCs in gated MTMDs. Experimental schemes to detect the VEE are also considered.
Being atomically thin and amenable to external controls, two-dimensional (2D) materials offer a new paradigm for the realization of patterned qubit fabrication and operation at room temperature for quantum information sciences applications. Here we s how that the antisite defect in 2D transition metal dichalcogenides (TMDs) can provide a controllable solid-state spin qubit system. Using high-throughput atomistic simulations, we identify several neutral antisite defects in TMDs that lie deep in the bulk band gap and host a paramagnetic triplet ground state. Our in-depth analysis reveals the presence of optical transitions and triplet-singlet intersystem crossing processes for fingerprinting these defect qubits. As an illustrative example, we discuss the initialization and readout principles of an antisite qubit in WS2, which is expected to be stable against interlayer interactions in a multilayer structure for qubit isolation and protection in future qubit-based devices. Our study opens a new pathway for creating scalable, room-temperature spin qubits in 2D TMDs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا