ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep $z$-band observations of the coolest Y dwarf

34   0   0.0 ( 0 )
 نشر من قبل Taisiya Kopytova G.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

WISE J085510.83-071442.5 (hereafter, WISE 0855-07) is the coolest Y dwarf known to date and is located at a distance of 2.31$pm 0.08$ pc, giving it the fourth largest parallax of any known star or brown dwarf system. We report deep $z$-band observations of WISE 0855-07 using FORS2 on UT1/VLT. We do not detect any counterpart to WISE 0855-07 in our $z$-band images and estimate a brightness upper limit of AB mag $>$ 24.8 ($F_{ u}$ $<$ 0.45 $mu$Jy) at 910 $pm$ 65 nm with $3sigma$-confidence. We combine our z-band upper limit with previous near- and mid-infrared photometry to place constraints on the atmospheric properties of WISE 0855-07 via comparison to models which implement water clouds in the atmospheres of $T_{eff} < 300$ K substellar objects. We find that none of the available models that implement water clouds can completely reproduce the observed SED of WISE 0855-07. Every model significantly disagrees with the (3.6 $mu$m / 4.5 $mu$m) flux ratio and at least one other bandpass. Since methane is predicted to be the dominant absorber at 3-4 $mu$m, these mismatches might point to an incorrect or incomplete treatment of methane in current models. We conclude that mbox{(a) WISE0855-07} has $T_{eff} sim 200-250$~K, (b) $< 80 %$ of its surface is covered by clouds, and (c) deeper observations, and improved models of substellar evolution, atmospheres, clouds, and opacities will be necessary to better characterize this object.

قيم البحث

اقرأ أيضاً

89 - R.M. Duan , W. Zong , J.-N. Fu 2021
We present analysis of a new pulsating helium-atmosphere (DB) white dwarf, EPIC~228782059, discovered from 55.1~days of {em K2} photometry. The long duration, high quality light curves reveal 11 independent dipole and quadruple modes, from which we d erive a rotational period of $34.1 pm 0.4$~hr for the star. An optimal model is obtained from a series of grids constructed using the White Dwarf Evolution Code, which returns $M_{*} = 0.685 pm 0.003 M_{odot}$, $T_{rm{eff}}= 21{,}910 pm 23$,K and $log g = 8.14 pm0.01$,dex. These values are comparable to those derived from spectroscopy by Koester & Kepler ($20{,}860 pm 160$,K and $7.94 pm0.03$,dex). If these values are confirmed or better constrained by other independent works, it would make EPIC~228782059 one of the coolest pulsating DB white dwarf star known, and would be helpful to test different physical treatments of convection, and to further investigate the theoretical instability strip of DB white dwarf stars.
Surprisingly, current atmospheric models suggest that the coolest T dwarfs (T8.5 to T10) are young and very low mass (0.06-2Gyr, 5-20Mjup, Leggett et al.2009, 2010, 2012). Studies of population kinematics offer an independent constraint on the age of the population. We present kinematic data of a sample of 75 mid to late T dwarfs drawn from a variety of sources. We define our samples, T5.5 to T8 and T8.5 to T10, as mid and late T respectively. UKIDSS LAS kinematics were derived from our automated LAS proper motion pipeline and distance estimates derived from spectral types and photometry for the minority of sources that lack parallaxes. Our results show that the mid and late T populations do not have distinctly separate tangential velocity distributions to 95% probability. They also give an approximate mean kinematic age equal to that of a population with B-V colour 0.51-0.54, and a spectral type late F, which corresponds to an age of about 2 Gyr. However the median and modal ages are greater. This indicates that while model atmospheres correctly predict some trends in colour with gravity and age, reliable ages cannot yet be inferred from them. More benchmark objects are needed to anchor the models.
Y dwarfs provide a unique opportunity to study free-floating objects with masses $<$30 M$_{Jup}$ and atmospheric temperatures approaching those of known Jupiter-like exoplanets. Obtaining distances to these objects is an essential step towards charac terizing their absolute physical properties. Using Spitzer/IRAC [4.5] images taken over baselines of $sim$2-7 years, we measure astrometric distances for 22 late-T and early Y dwarfs, including updated parallaxes for 18 objects and new parallax measurements for 4 objects. These parallaxes will make it possible to explore the physical parameter space occupied by the coldest brown dwarfs. We also present the discovery of 6 new late-T dwarfs, updated spectra of two T dwarfs, and the reclassification of a new Y dwarf, WISE J033605.04$-$014351.0, based on Keck/NIRSPEC $J$-band spectroscopy. Assuming that effective temperatures are inversely proportional to absolute magnitude, we examine trends in the evolution of the spectral energy distributions of brown dwarfs with decreasing effective temperature. Surprisingly, the Y dwarf class encompasses a large range in absolute magnitude in the near- to mid-infrared photometric bandpasses, demonstrating a larger range of effective temperatures than previously assumed. This sample will be ideal for obtaining mid-infrared spectra with the James Webb Space Telescope because their known distances will make it easier to measure absolute physical properties.
We present a new Y dwarf, WISE J030449.03-270508.3, confirmed from a candidate sample designed to pick out low temperature objects from the WISE database. The new object is typed Y0pec following a visual comparison with spectral standards, and lies a t a likely distance of 10-17 pc. Its tangential velocity suggests thin disk membership, but it shows some spectral characteristics that suggest it may be metal-poor and/or older than previously identified Y0 dwarfs. Based on trends seen for warmer late type T dwarfs, the Y-band flux peak morphology is indicative of sub-solar metallicity, and the enhanced red wing of the J-band flux peak offers evidence for high gravity and/or low metallicity (with associated model trends suggesting an age closer to ~10 Gyr and mass in the range 0.02-0.03 Mo). This object may thus be extending the population parameter-space of the known Y0 dwarfs.
We present the methods and first results of a survey of nearby high proper motion main sequence stars to probe for cool companions with the Gemini camera at Lick Observatory. This survey uses a sample of old (age > 2 Gyr) stars as targets to probe fo r companions down to temperatures of 500 K. Multi-epoch observations allow us to discriminate comoving companions from background objects. So far, our survey successfully re-discovers the wide T8.5 companion to GJ 1263 and discovers a companion to the nearby M0V star GJ 660.1. The companion to GJ 660.1 (GJ 660.1B) is ~4 magnitudes fainter than its host star in the J-band and is located at a projected separation of ~120AU. Known trigonometric parallax and 2MASS magnitudes for the GJ 660.1 system indicate a spectral type for the companion of M9 +/- 2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا