ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy Dependence of $Kpi$, $ppi$, and $Kp$ Fluctuations in Au+Au Collisions from $rm sqrt{s_{NN}}$ = 7.7 to 200 GeV

117   0   0.0 ( 0 )
 نشر من قبل Terence Tarnowsky
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy-ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical $Kpi$, $ppi$, and $Kp$ fluctuations as measured by the STAR experiment in central 0-5% Au+Au collisions from center-of-mass collision energies $rm sqrt{s_{NN}}$ = 7.7 to 200 GeV are presented. The observable $rm u_{dyn}$ was used to quantify the magnitude of the dynamical fluctuations in event-by-event measurements of the $Kpi$, $ppi$, and $Kp$ pairs. The energy dependences of these fluctuations from central 0-5% Au+Au collisions all demonstrate a smooth evolution with collision energy.

قيم البحث

اقرأ أيضاً

We report the STAR measurements of dielectron ($e^+e^-$) production at midrapidity ($|y_{ee}|<$1) in Au+Au collisions at $sqrt{s_{rm NN}}$ = 200,GeV. The measurements are evaluated in different invariant mass regions with a focus on 0.30-0.76 ($rho$- like), 0.76-0.80 ($omega$-like), and 0.98-1.05 ($phi$-like) GeV/$c^{2}$. The spectrum in the $omega$-like and $phi$-like regions can be well described by the hadronic cocktail simulation. In the $rho$-like region, however, the vacuum $rho$ spectral function cannot describe the shape of the dielectron excess. In this range, an enhancement of 1.77$pm$0.11(stat.)$pm$0.24(sys.)$pm$0.33(cocktail) is determined with respect to the hadronic cocktail simulation that excludes the $rho$ meson. The excess yield in the $rho$-like region increases with the number of collision participants faster than the $omega$ and $phi$ yields. Theoretical models with broadened $rho$ contributions through interactions with constituents in the hot QCD medium provide a consistent description of the dilepton mass spectra for the measurement presented here and the earlier data at the Super Proton Synchrotron energies.
We have measured the distributions of protons and deuterons produced in high energy heavy ion Au+Au collisions at RHIC over a very wide range of transverse and longitudinal momentum. Near mid-rapidity we have also measured the distribution of anti-pr otons and anti-deuterons. We present our results in the context of coalescence models. In particular we extract the volume of homogeneity and the average phase-space density for protons and anti-protons. Near central rapidity the coalescence parameter $B_2(p_T)$ and the space averaged phase-space density $<f> (p_T)$ are very similar for both protons and anti-protons. For protons we see little variation of either $B_2(p_T)$ or the space averaged phase-space density as the rapidity increases from 0 to 3. However both these quantities depend strongly on $p_T$ at all rapidities. These results are in contrast to lower energy data where the proton and anti-proton phase-space densities are different at $y$=0 and both $B_2$ and $f$ depend strongly on rapidity.
We present measurements of $e^+e^-$ production at midrapidity in Au$+$Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV. The invariant yield is studied within the PHENIX detector acceptance over a wide range of mass ($m_{ee} <$ 5 GeV/$c^2$) and pair trans verse momentum ($p_T$ $<$ 5 GeV/$c$), for minimum bias and for five centrality classes. The ee yield is compared to the expectations from known sources. In the low-mass region ($m_{ee}=0.30$--0.76 GeV/$c^2$) there is an enhancement that increases with centrality and is distributed over the entire pair pt range measured. It is significantly smaller than previously reported by the PHENIX experiment and amounts to $2.3pm0.4({rm stat})pm0.4({rm syst})pm0.2^{rm model}$ or to $1.7pm0.3({rm stat})pm0.3({rm syst})pm0.2^{rm model}$ for minimum bias collisions when the open-heavy-flavor contribution is calculated with {sc pythia} or {sc mc@nlo}, respectively. The inclusive mass and $p_T$ distributions as well as the centrality dependence are well reproduced by model calculations where the enhancement mainly originates from the melting of the $rho$ meson resonance as the system approaches chiral symmetry restoration. In the intermediate-mass region ($m_{ee}$ = 1.2--2.8 GeV/$c^2$), the data hint at a significant contribution in addition to the yield from the semileptonic decays of heavy-flavor mesons.
111 - J. H. Chen 2009
We report preliminary results of hypertriton observation in heavy-ion collisions at RHIC. We have identified 157 +- 30 candidates in the current sample containing ~10^8 Au+Au events at sqrt{s_{NN}} = 200 GeV. The production rate of hypertriton is clo se to that of helium 3. No extra penalty factor is observed for hypertriton, in contrast to results observed at the AGS.
We report on the first measurement of the charmed baryon $Lambda_c^{pm}$ production at midrapidity ($|y|$ $<$ 1) in Au+Au collisions at $sqrt{s_{NN}}$ = 200 GeV collected by the STAR experiment at the Relativistic Heavy Ion Collider. The $Lambda_c$/$ D^0$ (denoting ($Lambda_c^++Lambda_c^-$)/($D^0+bar{D^0}$)) yield ratio is measured to be 1.08 $pm$ 0.16 (stat.) $pm$ 0.26 (sys.) in the 0--20% most central Au+Au collisions for the transverse momentum ($p_T$) range 3 $<$ $p_T$ $<$ 6 GeV/$c$. This is significantly larger than the PYTHIA model calculations for $p+p$ collisions. The measured $Lambda_c$/$D^0$ ratio, as a function of $p_T$ and collision centrality, is comparable to the baryon-to-meson ratios for light and strange hadrons in Au+Au collisions. Model calculations including coalescence hadronization for charmed baryon and meson formation reproduce the features of our measured $Lambda_c$/$D^0$ ratio.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا