ترغب بنشر مسار تعليمي؟ اضغط هنا

Calculations for Extended Thermodynamics of dense gases up to whatever order and with only some symmetries

313   0   0.0 ( 0 )
 نشر من قبل Sebastiano Pennisi
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S Pennisi




اسأل ChatGPT حول البحث

The 14 moments model for dense gases, introduced in the last years by Ruggeri, Sugiyama and collaborators, is here considered. They have found the closure of the balance equations up to second order with respect to equilibrium; subsequently, Carrisi has found the closure up to whatever order with respect to equilibrium, but for a more constrained system where more symmetry conditions are imposed. Here the closure is obtained up to whatever order and without imposing the supplementary conditions. It comes out that the first non symmetric parts appear only at third order with respect to equilibrium, even if Ruggeri and Sugiyama found a non symmetric part proportional to an arbitrary constant also at first order with respect to equilibrium. Consequently, this constant must be zero, as Ruggeri, Sugiyama assumed in the applications and on an intuitive ground.



قيم البحث

اقرأ أيضاً

Extended Thermodynamics is the natural framework in which to study the physics of fluids, because it leads to symmetric hyperbolic systems of field laws, thus assuming important properties such as finite propagation speeds of shock waves and well pos edness of the Cauchy problem. The closure of the system of balance equations is obtained by imposing the entropy principle and that of galilean relativity. If we take the components of the mean field as independent variables, these two principles are equivalent to some conditions on the entropy density and its flux. The method until now used to exploit these conditions, with the macroscopic approach, has not been used up to whatever order with respect to thermodynamical equilibrium. This is because it leads to several difficulties in calculations. Now these can be overcome by using a new method proposed recently by Pennisi and Ruggeri. Here we apply it to the 14 moments model. We will also show that the 13 moments case can be obtained from the present one by using the method of subsystems.
Recently the 14 moments model of Extended Thermodynamics for dense gases and macromolecular fluids has been considered and an exact solution, of the restrictions imposed by the entropy principle and that of Galilean relativity, has been obtained thro ugh a non relativistic limit. Here we prove uniqueness of the above solution and exploit other pertinent conditions such us the convexity of the function $h$ related to the entropy density, the problem of subsystems and the fact that the flux in the conservation law of mass must be the moment of order 1 in the conservation law of momentum. Also the solution of this last condition is here obtained without using expansions around equilibrium. The results present interesting aspects which were not suspected when only approximated solutions of this problem were known.
98 - D. Nath , P. Roy 2020
We examine time dependent Schru007fodinger equation with oscillating boundary condition. More specifically, we use separation of variable technique to construct time dependent rationally extended Pu007foschl-Teller potential (whose solutions are give n by in terms of X1 Jacobi exceptional orthogonal polynomials) and its supersymmetric partner, namely the Pu007foschl-Teller potential. We have obtained exact solutions of the Schru007fodinger equation with the above mentioned potentials subjected to some boundary conditions of the oscillating type. A number of physical quantities like the average energy, probability density, expectation values etc. have also been computed for both the systems and compared with each other.
Statistical thermodynamics of small systems shows dramatic differences from normal systems. Parallel to the recently presented steady-state thermodynamic formalism for master equation and Fokker-Planck equation, we show that a ``thermodynamic theory can also be developed based on Tsallis generalized entropy $S^{(q)}=sum_{i=1}^N(p_i-p_i^q)/[q(q-1)]$ and Shiinos generalized free energy $F^{(q)}=[sum_{i=1}^Np_i(p_i/pi_i)^{q-1}-1]/[q(q-1)]$, where $pi_i$ is the stationary distribution. $dF^{(q)}/dt=-f_d^{(q)}le 0$ and it is zero iff the system is in its stationary state. $dS^{(q)}/dt-Q_{ex}^{(q)} = f_d^{(q)}$ where $Q_{ex}^{(q)}$ characterizes the heat exchange. For systems approaching equilibrium with detailed balance, $f_d^{(q)}$ is the product of Onsagers thermodynamic flux and force. However, it is discovered that the Onsagers force is non-local. This is a consequence of the particular transformation invariance for zero energy of Tsallis statistics.
173 - Alvaro Salas 2008
In this paper we show some exact solutions for the general fifth order KdV equation. These solutions are obtained by the extended tanh method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا