ﻻ يوجد ملخص باللغة العربية
Thermodynamic properties of cubic Heisenberg ferromagnets with competing exchange interactions are considered near the frustration point where the coefficient $D$ in the spin-wave spectrum $E_{mathbf{k}}sim D k^{2}$ vanishes. Within the Dyson-Maleev formalism it is found that at low temperatures thermal fluctuations stabilize ferromagnetism by increasing the value of $D$. For not too strong frustration this leads to an unusual concave shape of the temperature dependence of magnetization, which is in agreement with experimental data on the europium chalcogenides. Anomalous temperature behavior of magnetization is confirmed by Monte Carlo simulation. Strong field dependence of magnetization (paraprocess) at finite temperature is found near the frustration point.
The J1-J2 model on a square lattice exhibits a rich variety of different forms of magnetic order that depend sensitively on the ratio of exchange constants J2/J1. We use bulk magnetometry and polarized neutron scattering to determine J1 and J2 unambi
The nature of the low temperature ground state of the pyrochlore compound Tb2Ti2O7 remains a puzzling issue. Dynamic fluctuations and short-range correlations persist down to 50 mK, as evidenced by microscopic probes. In parallel, magnetization measu
We argue that collinearly ordered states which exist in strongly frustrated spin systems for special rational values of the magnetization are stabilized by thermal as well as quantum fluctuations. These general predictions are tested by Monte Carlo s
We show that pharmacosiderite is a novel cluster antiferromagnet comprising frustrated regular tetrahedra made of spin-5/2 Fe3+ ions that are arranged in the primitive cubic lattice. The connectivity of the tetrahedra and the inter-cluster interactio
Ultrasound velocity measurements of the orbital-degenerate frustrated spinel MgV$_2$O$_4$ are performed in the high-purity single crystal which exhibits successive structural and antiferromagnetic phase transitions, and in the disorder-introduced sin