ترغب بنشر مسار تعليمي؟ اضغط هنا

New features of MadAnalysis 5 for analysis design and reinterpretation

320   0   0.0 ( 0 )
 نشر من قبل Benjamin Fuks
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present MadAnalysis 5, an analysis package dedicated to phenomenological studies of simulated collisions occurring in high-energy physics experiments. Within this framework, users are invited, through a user-friendly Python interpreter, to implement physics analyses in a very simple manner. A C++ code is then automatically generated, compiled and executed. Very recently, the expert mode of the program has been extended so that analyses with multiple signal/control regions can be handled. Additional observables have also been included, and an interface to several fast detector simulation packages has been developed, one of them being a tune of the Delphes 3 software. As a result, a recasting of existing ATLAS and CMS analyses can be achieved straightforwardly.

قيم البحث

اقرأ أيضاً

219 - B. Dumont , B. Fuks , S. Kraml 2014
We present the implementation, in the MadAnalysis 5 framework, of several ATLAS and CMS searches for supersymmetry in data recorded during the first run of the LHC. We provide extensive details on the validation of our implementations and propose to create a public analysis database within this framework.
We provide a comprehensive and pedagogical introduction to the MadAnalysis 5 framework, with a particular focus on its usage for reinterpretation studies. To this end, we first review the main features of the normal mode of the program and how a dete ctor simulation can be handled. We then detail, step-by-step, how to implement and validate an existing LHC analysis in the MadAnalysis 5 framework and how to use this reimplementation, possibly together with other recast codes available from the MadAnalysis 5 Public Analysis Database, for reinterpreting ATLAS and CMS searches in the context of a new model. Each of these points is illustrated by concrete examples. Moreover, complete reference cards for the normal and expert modes of MadAnalysis 5 are provided in two technical appendices.
We introduce a new simplified fast detector simulator in the MadAnalysis 5 platform. The Python-like interpreter of the programme has been augmented by new commands allowing for a detector parametrisation through smearing and efficiency functions. On run time, an associated C++ code is automatically generated and executed to produce reconstructed-level events. In addition, we have extended the MadAnalysis 5 recasting infrastructure to support our detector emulator, and we provide predefined LHC detector configurations. We have compared predictions obtained with our approach to those resulting from the usage of the Delphes 3 software, both for Standard Model processes and a few new physics signals. Results generally agree to a level of about 10% or better, the largest differences in the predictions stemming from the different strategies that are followed to model specific detector effects. Equipped with these new functionalities, MadAnalysis 5 now offers a new user-friendly way to include detector effects when analysing collider events, the simulation of the detector and the analysis being both handled either through a set of intuitive Python commands or directly within the C++ core of the platform.
181 - Beranger Dumont 2014
Separate, validated implementations of the ATLAS and CMS new physics analyses are necessary to fully exploit the potential of these searches. To this end, we use MadAnalysis 5, a public framework for collider phenomenology. In this talk, we present r ecent developments of MadAnalysis 5, as well as a new public database of reimplemented LHC analyses. The validation of one ATLAS and one CMS search for supersymmetry, present in the database, is also summarized.
71 - J.Ranft 1999
DPMJET is a Monte Carlo model for sampling of hadron-hadron, hadron-nucleus, nucleus-nucleus and neutrino-nucleus interactions at accelerator and Cosmic Ray energies according to the two-component Dual Parton Model. Here we describe new features in v ersion DPMJET-II.5: Implementation of new DPM diagrams for an improved description of baryon stopping in nuclear collisions and improvements in the calculation of Glauber cross sections. The new diagrams allow two quite different extrapolations of the model to the highest Cosmic Ray energies. The new version of the model is compared to experimental data on hadron-hadron, hadron-nucleus and nucleus-nucleus collisions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا