ﻻ يوجد ملخص باللغة العربية
The orbits of giant extrasolar planets often have surprisingly small semi-major axes, large eccentricities, or severe misalignments between their normals and their host stars spin axes. In some formation scenarios invoking Kozai-Lidov oscillations, an external planetary companion drives a planet onto an orbit having these properties. The mutual inclinations for Kozai-Lidov oscillations can be large and have not been confirmed observationally. Here we deduce that observed eccentric warm Jupiters with eccentric giant companions have mutual inclinations that oscillate between 35-65 deg. Our inference is based on the pairs observed apsidal separations, which cluster near 90 deg. The near-orthogonality of periapse directions is effected by the outer companions quadrupolar and octupolar potentials. These systems may be undergoing a stalled version of tidal migration that produces warm Jupiters over hot Jupiters, and provide evidence for a population of multi-planet systems that are not flat and have been sculpted by Kozai-Lidov oscillations.
We propose a stringent observational test on the formation of warm Jupiters (gas-giant planets with 10 d <~ P <~ 100 d) by high-eccentricity (high-e) migration mechanisms. Unlike hot Jupiters, the majority of observed warm Jupiters have pericenter di
In this paper we search for distant massive companions to known transiting gas giant planets that may have influenced the dynamical evolution of these systems. We present new radial velocity observations for a sample of 51 planets obtained using the
We examine the problem of assigning plots of land to prospective buyers who prefer living next to their friends. They care not only about the plot they receive, but also about their neighbors. This externality results in a highly non-trivial problem
We evaluate the orbital evolution and several plausible origins scenarios for the mutually inclined orbits of Upsilon Andromedae c and d. These two planets have orbital elements that oscillate with large amplitudes and lie close to the stability boun
We study the three-dimensional evolution of a viscous protoplanetary disc which accretes gas material from a second protoplanetary disc during a close encounter in an embedded star cluster. The aim is to investigate the capability of the mass accreti