ترغب بنشر مسار تعليمي؟ اضغط هنا

A Class of Warm Jupiters with Mutually Inclined, Apsidally Misaligned, Close Friends

94   0   0.0 ( 0 )
 نشر من قبل Rebekah Dawson
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The orbits of giant extrasolar planets often have surprisingly small semi-major axes, large eccentricities, or severe misalignments between their normals and their host stars spin axes. In some formation scenarios invoking Kozai-Lidov oscillations, an external planetary companion drives a planet onto an orbit having these properties. The mutual inclinations for Kozai-Lidov oscillations can be large and have not been confirmed observationally. Here we deduce that observed eccentric warm Jupiters with eccentric giant companions have mutual inclinations that oscillate between 35-65 deg. Our inference is based on the pairs observed apsidal separations, which cluster near 90 deg. The near-orthogonality of periapse directions is effected by the outer companions quadrupolar and octupolar potentials. These systems may be undergoing a stalled version of tidal migration that produces warm Jupiters over hot Jupiters, and provide evidence for a population of multi-planet systems that are not flat and have been sculpted by Kozai-Lidov oscillations.

قيم البحث

اقرأ أيضاً

We propose a stringent observational test on the formation of warm Jupiters (gas-giant planets with 10 d <~ P <~ 100 d) by high-eccentricity (high-e) migration mechanisms. Unlike hot Jupiters, the majority of observed warm Jupiters have pericenter di stances too large to allow efficient tidal dissipation to induce migration. To access the close pericenter required for migration during a Kozai-Lidov cycle, they must be accompanied by a strong enough perturber to overcome the precession caused by General Relativity (GR), placing a strong upper limit on the perturbers separation. For a warm Jupiter at a ~ 0.2 AU, a Jupiter-mass (solar-mass) perturber is required to be <~ 3 AU (<~ 30 AU) and can be identified observationally. Among warm Jupiters detected by Radial Velocities (RV), >~ 50% (5 out of 9) with large eccentricities (e >~ 0.4) have known Jovian companions satisfying this necessary condition for high-e migration. In contrast, <~ 20 % (3 out of 17) of the low-e (e <~ 0.2) warm Jupiters have detected additional Jovian companions, suggesting that high-e migration with planetary perturbers may not be the dominant formation channel. Complete, long-term RV follow-ups of the warm-Jupiter population will allow a firm upper limit to be put on the fraction of these planets formed by high-e migration. Transiting warm Jupiters showing spin-orbit misalignments will be interesting to apply our test. If the misalignments are solely due to high-e migration as commonly suggested, we expect that the majority of warm Jupiters with low-e (e <~0.2) are not misaligned, in contrast with low-e hot Jupiters.
In this paper we search for distant massive companions to known transiting gas giant planets that may have influenced the dynamical evolution of these systems. We present new radial velocity observations for a sample of 51 planets obtained using the Keck HIRES instrument, and find statistically significant accelerations in fifteen systems. Six of these systems have no previously reported accelerations in the published literature: HAT-P-10, HAT-P-22, HAT-P-29, HAT-P-32, WASP-10, and XO-2. We combine our radial velocity fits with Keck NIRC2 adaptive optics (AO) imaging data to place constraints on the allowed masses and orbital periods of the companions responsible for the detected accelerations. The estimated masses of the companions range between 1-500 M_Jup, with orbital semi-major axes typically between 1-75 AU. A significant majority of the companions detected by our survey are constrained to have minimum masses comparable to or larger than those of the transiting planets in these systems, making them candidates for influencing the orbital evolution of the inner gas giant. We estimate a total occurrence rate of 51 +/- 10% for companions with masses between 1-13 M_Jup and orbital semi-major axes between 1-20 AU in our sample. We find no statistically significant difference between the frequency of companions to transiting planets with misaligned or eccentric orbits and those with well-aligned, circular orbits. We combine our expanded sample of radial velocity measurements with constraints from transit and secondary eclipse observations to provide improved measurements of the physical and orbital characteristics of all of the planets included in our survey.
We examine the problem of assigning plots of land to prospective buyers who prefer living next to their friends. They care not only about the plot they receive, but also about their neighbors. This externality results in a highly non-trivial problem structure, as both friendship and land value play a role in determining agent behavior. We examine mechanisms that guarantee truthful reporting of both land values and friendships. We propose variants of random serial dictatorship (RSD) that can offer both truthfulness and welfare guarantees. Interestingly, our social welfare guarantees are parameterized by the value of friendship: if these values are low, enforcing truthful behavior results in poor welfare guarantees and imposes significant constraints on agents choices; if they are high, we achieve good approximation to the optimal social welfare.
We evaluate the orbital evolution and several plausible origins scenarios for the mutually inclined orbits of Upsilon Andromedae c and d. These two planets have orbital elements that oscillate with large amplitudes and lie close to the stability boun dary. This configuration, and in particular the observed mutual inclination, demands an explanation. The planetary system may be influenced by a nearby low-mass star, Upsilon And B, which could perturb the planetary orbits, but we find it cannot modify two coplanar orbits into the observed mutual inclination of ~30 deg. However, it could incite ejections or collisions between planetary companions that subsequently raise the mutual inclination to >30 deg. Our simulated systems with large mutual inclinations tend to be further from the stability boundary than Upsilon And, but we are able to produce similar systems. We conclude that scattering is a plausible mechanism to explain the observed orbits of Upsilon And c and d, but we cannot determine whether the scattering was caused by instabilities among the planets themselves or by perturbations from Upsilon And B. We also develop a procedure to quantitatively compare numerous properties of the observed system to our numerical models. Although we only implement this procedure to Upsilon And, it may be applied to any exoplanetary system.
We study the three-dimensional evolution of a viscous protoplanetary disc which accretes gas material from a second protoplanetary disc during a close encounter in an embedded star cluster. The aim is to investigate the capability of the mass accreti on scenario to generate strongly inclined gaseous discs which could later form misaligned planets. We use smoothed particle hydrodynamics to study mass transfer and disc inclination for passing stars and circumstellar discs with different masses. We explore different orbital configurations to find the parameter space which allows significant disc inclination generation. citet{Thi2011} suggested that significant disc inclination and disc or planetary system shrinkage can generally be produced by the accretion of external gas material with a different angular momentum. We found that this condition can be fullfilled for a large range of gas mass and angular momentum. For all encounters, mass accretion from the secondary disc increases with decreasing mass of the secondary proto-star. Thus, higher disc inclinations can be attained for lower secondary stellar masses. Variations of the secondary discs orientation relative to the orbital plane can alter the disc evolution significantly. The results taken together show that mass accretion can change the three-dimensional disc orientation significantly resulting in strongly inclined discs. In combination with the gravitational interaction between the two star-disc systems, this scenario is relevant for explaining the formation of highly inclined discs which could later form misaligned planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا