ترغب بنشر مسار تعليمي؟ اضغط هنا

Superfluidity and solid orders in two-component Bose gas with dipolar interactions in an optical lattice

663   0   0.0 ( 0 )
 نشر من قبل Ikuo Ichinose
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study an extended bosonic t-J model in an optical lattice, which describes two-component hard-core bosons with a nearest-neighbor (NN) pseudo-spin interaction, and also inter- and intra-species dipole-dipole interactions (DDI). In particular, we focus on the case in which two component hard-core bosons have anti-parallel polarized dipoles with each other. The global phase diagram is studied by means of the Gutzwiller variational method and also the quantum Monte-Carlo simulations (QMC). The both calculations show that a stripe solid order, besides a checkerboard one, appears as a result of the DDI. By the QMC, we find that two kinds of supersolid (SS) form, checkerboard SS and stripe SS, and we also verify the existence of some exotic phase between the stripe solid and checkerboard SS. Finally by the QMC, we study the t-J-like model, which was experimentally realized recently by A. de Paz et al. [Phys. Rev. Lett. {bf 111}, 185305 (2013)].



قيم البحث

اقرأ أيضاً

We investigate a polaronic excitation in a one-dimensional spin-1/2 Fermi gas with contact attractive interactions, using the complex Langevin method, which is a promising approach to evade a possible sign problem in quantum Monte Carlo simulations. We found that the complex Langevin method works correctly in a wide range of temperature, interaction strength, and population imbalance. The Fermi polaron energy extracted from the two-point imaginary Greens function is not sensitive to the temperature and the impurity concentration in the parameter region we considered. Our results show a good agreement with the solution of the thermodynamic Bethe ansatz at zero temperature.
We characterize the immiscibility-miscibility transition (IMT) of a two-component Bose-Einstein condensate (BEC) with dipole-dipole interactions. In particular, we consider the quasi-two dimensional geometry, where a strong trapping potential admits only zero-point motion in the trap direction, while the atoms are more free to move in the transverse directions. We employ the Bogoliubov treatment of the two-component system to identify both the well-known long-wavelength IMT in addition to a roton-like IMT, where the transition occurs at finite-wave number and is reminiscent of the roton softening in the single component dipolar BEC. Additionally, we verify the existence of the roton IMT in the fully trapped, finite systems by direct numerical simulation of the two-component coupled non-local Gross-Pitaevskii equations.
We study the superfluid behavior of a population imbalanced ultracold atomic Fermi gases with a short range attractive interaction in a one-dimensional (1D) optical lattice, using a pairing fluctuation theory. We show that, besides widespread pseudog ap phenomena and intermediate temperature superfluidity, the superfluid phase is readily destroyed except in a limited region of the parameter space. We find a new mechanism for pair hopping, assisted by the excessive majority fermions, in the presence of continuum-lattice mixing, which leads to an unusual constant BEC asymptote for $T_c$ that is independent of pairing strength. In result, on the BEC side of unitarity, superfluidity, when it exists, may be strongly enhanced by population imbalance.
Interacting Fermi gas provides an ideal model system to understand unconventional pairing and intertwined orders relevant to a large class of quantum materials. Rydberg-dressed Fermi gas is a recent experimental system where the sign, strength, and r ange of the interaction can be controlled. The interaction in momentum space has a negative minimum at $q_c$ inversely proportional to the characteristic length-scale in real space, the soft-core radius $r_c$. We show theoretically that single-component (spinless) Rydberg-dressed Fermi gas in two dimensions has a rich phase diagram with novel superfluid and density wave orders due to the interplay of the Fermi momentum $p_F$, interaction range $r_c$, and interaction strength $u_0$. For repulsive bare interactions $u_0>0$, the dominant instability is $f$-wave superfluid for $p_Fr_clesssim 2$, and density wave for $p_Fr_cgtrsim 4$. The $f$-wave pairing in this repulsive Fermi gas is reminiscent of the conventional Kohn-Luttinger mechanism, but has a much higher $T_c$. For attractive bare interactions $u_0<0$, the leading instability is $p$-wave pairing. The phase diagram is obtained from functional renormalization group that treats all competing many-body instabilities in the particle-particle and particle-hole channels on equal footing.
136 - Sagarika Basak , Han Pu 2021
Two-component coupled Bose gas in a 1D optical lattice is examined. In addition to the postulated Mott insulator and Superfluid phases, multiple bosonic components manifest spin degrees of freedom. Coupling of the components in the Bose gas within sa me site and neighboring sites leads to substantial change in the previously observed spin phases revealing fascinating remarkable spin correlations. In the presence of strong interactions it gives rise to unconventional effective ordering of the spins leading to unprecedented spin phases: site-dependent $ztextsf{-}x$ spin configuration with tunable (by hopping parameter) proclivity of spin alignment along $z$. Exact analysis and Variational Monte Carlo (VMC) along with stochastic minimization on Entangled Plaquette State (EPS) bestow a unique and enhanced perspective into the system beyond the scope of mean-field treatment. The physics of complex intra-component tunneling and inter-component coupling and filling factor greater than unity are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا