ﻻ يوجد ملخص باللغة العربية
Proton radiography is a useful diagnostic of high energy density (HED) plasmas under active theoretical and experimental development. In this paper we describe a new simulation tool that interacts realistic laser-driven point-like proton sources with three dimensional electromagnetic fields of arbitrary strength and structure and synthesizes the associated high resolution proton radiograph. The present tools numerical approach captures all relevant physics effects, including effects related to the formation of caustics. Electromagnetic fields can be imported from PIC or hydrodynamic codes in a streamlined fashion, and a library of electromagnetic field `primitives is also provided. This latter capability allows users to add a primitive, modify the field strength, rotate a primitive, and so on, while quickly generating a high resolution radiograph at each step. In this way, our tool enables the user to deconstruct features in a radiograph and interpret them in connection to specific underlying electromagnetic field elements. We show an example application of the tool in connection to experimental observations of the Weibel instability in counterstreaming plasmas, using $sim 10^8$ particles generated from a realistic laser-driven point-like proton source, imaging fields which cover volumes of $sim10 $ mm$^3$. Insights derived from this application show that the tool can support understanding of HED plasmas.
Global MCAO aims to exploit a very wide technical field of view to find AO-suitable NGSs, with the goal to increase the overall sky coverage. The concept foresees the use of numerical entities, called Virtual Deformable Mirrors, to deal with the nomi
Proton radiography is a technique in high energy density science to diagnose magnetic and/or electric fields in a plasma by firing a proton beam and detecting its modulated intensity profile on a screen. Current approaches to retrieve the integrated
Due to their high cross-field mobility, neutrals can contribute to momentum transport even at the low relative densities found inside the separatrix and they can generate intrinsic rotation. We use a charge-exchange dominated solution to the neutral
Ultra-intense ultra-short laser is firstly used to irradiate the capacity-coil target to generate magnetic field. The spatial structure and temporal evolution of huge magnetic fields were studied with time-gated proton radiography method. A magnetic
Proton therapy is nowadays becoming a wide spread clinical practice in cancer therapy and sophisticated treatment planning systems are routinely used to exploit at best the ballistic properties of charged particles. The information on the quality of