ترغب بنشر مسار تعليمي؟ اضغط هنا

Charged Lepton Flavor Violation $murightarrow egamma$ in $mu-tau$ Symmetric SUSY SO(10) mSUGRA, NUHM, NUGM, and NUSM theories and LHC

314   0   0.0 ( 0 )
 نشر من قبل Kalpana Bora
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Charged Lepton Flavor Violation (cLFV) processes like $ mu rightarrow e gamma $ are rare decay processes, that are another signature of physics beyond Standard Model (BSM). These processes have been studied in various models, that could explain neutrino oscillations and mixings. In this work, we present bounds on cLFV decay $ mu rightarrow e gamma $ in a $ mu $-$ tau $ symmetric SUSY SO(10) theory, using type I seesaw mechanism. The updated constraints on BR($ mu rightarrow e gamma $) from MEG experiment, recently measured value of Higgs mass at LHC and value of $theta_{13}$ from reactor data have been used. We present our results in mSUGRA, NUHM, NUGM and NUSM models, and sensitivity to test these theories at next run of LHC is also discussed.

قيم البحث

اقرأ أيضاً

The size of the branching ratios for the $tau to mu gamma$ and $tau to mu gamma gamma$ decays induced by a lepton flavor violating Higgs interaction $Htau mu$ is studied in the frame of effective field theories. The best constraint on the $Htau mu$ v ertex, derived from the know measurement on the muon anomalous magnetic moment, is used to impose the upper bounds $Br(tau to mu gamma)<2.5times 10^{-10}$ and $Br(tau to mu gamma gamma)<2.3times 10^{-12}$, which are more stringent than current experimental limits on this class of transitions.
Till today lepton flavor violation has not been observed in processes involving charged leptons. Hence, a search for it is under hot pursuit both in theories and experiments. In our current work, we investigate the rates of rare decay processes such as $tau rightarrow mu gamma$ in SU(5) SUSY GUT and found that it satisfies the current bound and is one order below the projected sensitivity. This gives a corroborative argument for the influence of the large top-Yukawa coupling at the GUT scale ($lambda_{tG}$) on flavor violating decay rates of leptons which are investigable at low energy electroweak scale $M_Z$. Secondly, we discuss the decay rates of $mu rightarrow e gamma$ & $tau rightarrow mu gamma$ in MSSM with added right handed neutrino superfields. From this, we set bounds on $tan beta$ and further, we investigate the mass of $tilde{chi}^0 _1$, the LSP, using the rates of LFV decays. In the calculations, the latest updated data from LHC, neutrino oscillation experiments and constraints on branching ratios from the MEG experiment have been used.
We have studied the scotogenic model proposed by Ernest Ma, which is an extension of the Standard Model by three singlet right-handed neutrinos and a scalar doublet. This model proposes that the light neutrinos acquire a non-zero mass at 1-loop level . In this work, the realisation of the scotogenic model is done by using discrete symmetries $A_{4}times Z_{4}$ in which the non-zero $theta_{13}$ is produced by assuming a non-degeneracy in the loop factor. Considering different lepton flavor violating(LFV) processes such as $l_{alpha}longrightarrow l_{beta}gamma$ and $l_{alpha}longrightarrow 3l_{beta}$, their impact on neutrino phenomenology is studied. We have also analysed $0 ubetabeta$ and baryon asymmetry of the Universe (BAU) in this work.
In this work, we studied baryogenesis via leptogenesis, neutrinoless double beta decay (NDBD) in the framework of LRSM where type I and type II seesaw terms arises naturally. The type I seesaw mass term is considered to be favouring $mu-tau$ symmetry , taking into account the widely studied realizations of $mu-tau$ symmetric neutrino mass models, viz. Tribimaximal Mixing (TBM), Hexagonal Mixing (HM) and Golden Ratio Mixing (GRM) respectively. The required correction to generate a non vanishing reactor mixing angle $theta_{13}$ is obtained from the perturbation matrix, type II seesaw mass term in our case. We studied the new physics contributions to NDBD and baryogenesis ignoring the left-right gauge boson mixing and the heavy-light neutrino mixing, keeping mass of the gauge bosons and scalars to be around TeV and studied the effects of the new physics contributions on the effective mass, NDBD half life and cosmological BAU and compared with the values imposed by experiments. We basically tried to find the leading order contributions to NDBD and BAU, coming from type I or type II seesaw in our work.
We have studied neutrinoless double beta decay and charged lepton flavour violation in broken $mu-tau$ symmetric neutrino masses in a generic left-right symmetric model (LRSM). The leading order $mu-tau$ symmetric mass matrix originates from the type I (II) seesaw mechanism, whereas the perturbations to $mu-tau$ symmetry in order for generation of non-zero reactor mixing angle $theta_{13}$, as required by latest neutrino oscillation data, originates from the type II (I) seesaw mechanism. In our work, we considered four different realizations of $mu-tau$ symmetry, viz. Tribimaximal Mixing (TBM), Bimaximal Mixing (BM), Hexagonal Mixing (HM) and Golden Ratio Mixing (GRM). We then studied the new physics contributions to neutrinoless double beta decay (NDBD) ignoring the left-right gauge boson mixing and the heavy-light neutrino mixing within the framework of LRSM. We have considered the mass of the gauge bosons and scalars to be around TeV and studied the effects of the new physics contributions on the effective mass and the NDBD half life and compared with the current experimental limit imposed by KamLAND-Zen. We further extended our analysis by correlating the lepton flavour violation of the decay processes, $left(murightarrow 3eright)$ and $left(murightarrow egammaright)$ with the lightest neutrino mass and atmospheric mixing angle $theta_{23}$ respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا