ﻻ يوجد ملخص باللغة العربية
We investigate temperature reservoir effects in a lossy Kerr nonlinear resonator considering selective excitation of ooscillatory mode driven by a sequence of Gaussian pulses. In this way, we analyze time-dependent populations of photon-number states and quantum statistics on the base of second-order photon correlation function in one-photon and two-photon transitions. The effects coming from thermal reservoirs are interesting for performing more realistic approach to generate Fock states and for study phenomena connecting quantum engineering and temperature. We also study the role of pulse-shaping effects during selective excitation.
We study Kerr nonlinear resonators (KNR) driven by a continuous wave field in quantum regimes where strong Kerr interactions give rise to selective resonant excitations of oscillatory modes. We use an exact quantum theory of KNR in the framework of t
Cat states of the microwave field stored in high-Q resonators show great promise for robust encoding and manipulation of quantum information. Here we propose an approach to efficiently prepare such cat states in a Kerr-nonlinear resonator by the use
Quantum states can be stabilized in the presence of intrinsic and environmental losses by either applying active feedback conditioned on an ancillary system or through reservoir engineering. Reservoir engineering maintains a desired quantum state thr
Using the numerical renormalization group (NRG), we analyze the temperature dependence of the spectral function of a magnetic impurity described by the single-impurity Anderson model coupled to superconducting contacts. With increasing temperature th
We introduce an optomechanical scheme for the probabilistic preparation of single-phonon Fock states of mechanical modes based on photo-subtraction. The quality of the produced mechanical state is confirmed by a number of indicators, including phonon