ﻻ يوجد ملخص باللغة العربية
We present a modern machine learning approach for cluster dynamical mass measurements that is a factor of two improvement over using a conventional scaling relation. Different methods are tested against a mock cluster catalog constructed using halos with mass >= 10^14 Msolar/h from Multidarks publicly-available N-body MDPL halo catalog. In the conventional method, we use a standard M(sigma_v) power law scaling relation to infer cluster mass, M, from line-of-sight (LOS) galaxy velocity dispersion, sigma_v. The resulting fractional mass error distribution is broad, with width=0.87 (68% scatter), and has extended high-error tails. The standard scaling relation can be simply enhanced by including higher-order moments of the LOS velocity distribution. Applying the kurtosis as a correction term to log(sigma_v) reduces the width of the error distribution to 0.74 (16% improvement). Machine learning can be used to take full advantage of all the information in the velocity distribution. We employ the Support Distribution Machines (SDMs) algorithm that learns from distributions of data to predict single values. SDMs trained and tested on the distribution of LOS velocities yield width=0.46 (47% improvement). Furthermore, the problematic tails of the mass error distribution are effectively eliminated. Decreasing cluster mass errors will improve measurements of the growth of structure and lead to tighter constraints on cosmological parameters.
We study dynamical mass measurements of galaxy clusters contaminated by interlopers and show that a modern machine learning (ML) algorithm can predict masses by better than a factor of two compared to a standard scaling relation approach. We create t
We demonstrate the ability of convolutional neural networks (CNNs) to mitigate systematics in the virial scaling relation and produce dynamical mass estimates of galaxy clusters with remarkably low bias and scatter. We present two models, CNN$_mathrm
We study methods for reconstructing Bayesian uncertainties on dynamical mass estimates of galaxy clusters using convolutional neural networks (CNNs). We discuss the statistical background of approximate Bayesian neural networks and demonstrate how va
We present an algorithm for inferring the dynamical mass of galaxy clusters directly from their respective phase-space distributions, i.e. the observed line-of-sight velocities and projected distances of galaxies from the cluster centre. Our method e
The hot intra-cluster medium (ICM) surrounding the heart of galaxy clusters is a complex medium comprised of various emitting components. Although previous studies of nearby galaxy clusters, such as the Perseus, the Coma, or the Virgo cluster, have d