ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral and morphological analysis of the remnant of Supernova 1987A with ALMA & ATCA

189   0   0.0 ( 0 )
 نشر من قبل Giovanna Zanardo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Giovanna Zanardo




اسأل ChatGPT حول البحث

We present a comprehensive spectral and morphological analysis of the remnant of Supernova (SN) 1987A with the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/submillimeter Array (ALMA). The non-thermal and thermal components of the radio emission are investigated in images from 94 to 672 GHz ($lambda$ 3.2 mm to 450 $mu$m), with the assistance of a high-resolution 44 GHz synchrotron template from the ATCA, and a dust template from ALMA observations at 672 GHz. An analysis of the emission distribution over the equatorial ring in images from 44 to 345 GHz highlights a gradual decrease of the east-to-west asymmetry ratio with frequency. We attribute this to the shorter synchrotron lifetime at high frequencies. Across the transition from radio to far infrared, both the synchrotron/dust-subtracted images and the spectral energy distribution (SED) suggest additional emission beside the main synchrotron component ($S_{ u}propto u^{-0.73}$) and the thermal component originating from dust grains at $Tsim22$ K. This excess could be due to free-free flux or emission from grains of colder dust. However, a second flat-spectrum synchrotron component appears to better fit the SED, implying that the emission could be attributed to a pulsar wind nebula (PWN). The residual emission is mainly localised west of the SN site, as the spectral analysis yields $-0.4lesssimalphalesssim-0.1$ across the western regions, with $alphasim0$ around the central region. If there is a PWN in the remnant interior, these data suggest that the pulsar may be offset westward from the SN position.

قيم البحث

اقرأ أيضاً

We present Murchison Widefield Array observations of the supernova remnant (SNR) 1987A between 72 and 230 MHz, representing the lowest frequency observations of the source to date. This large lever arm in frequency space constrains the properties of the circumstellar medium created by the progenitor of SNR 1987A when it was in its red supergiant phase. As of late-2013, the radio spectrum of SNR 1987A between 72 MHz and 8.64 GHz does not show any deviation from a non-thermal power-law with a spectral index of $-0.74 pm 0.02$. This spectral index is consistent with that derived at higher frequencies, beneath 100 GHz, and with a shock in its adiabatic phase. A spectral turnover due to free-free absorption by the circumstellar medium has to occur below 72 MHz, which places upper limits on the optical depth of $leq$ 0.1 at a reference frequency of 72 MHz, emission measure of $lesssim$ 13,000 cm$^{-6}$ pc, and an electron density of $lesssim$ 110 cm$^{-3}$. This upper limit on the electron density is consistent with the detection of prompt radio emission and models of the X-ray emission from the supernova. The electron density upper limit implies that some hydrodynamic simulations derived a red supergiant mass loss rate that is too high, or a wind velocity that is too low. The mass loss rate of $sim 5 times 10^{-6}$ $M_{odot}$ yr$^{-1}$ and wind velocity of 10 km s$^{-1}$ obtained from optical observations are consistent with our upper limits, predicting a current turnover frequency due to free-free absorption between 5 and 60 MHz.
408 - Sangwook Park 2011
We have been monitoring the supernova remnant (SNR) 1987A with {it Chandra} observations since 1999. Here we report on the latest change in the soft X-ray light curve of SNR 1987A. For the last $sim$1.5 yr (since day $sim$8000), the soft X-ray flux h as significantly flattened, staying (within uncertainties) at $f_{rm X}$ $sim$ 5.7 $times$ 10$^{-12}$ erg cm$^{-2}$ s$^{-1}$ (corresponding to $L_{rm X}$ $sim$ 3.6 $times$ 10$^{36}$ erg s$^{-1}$) in the 0.5--2 keV band. This remarkable change in the recent soft X-ray light curve suggests that the forward shock is now interacting with a decreasing density structure, after interacting with an increasing density gradient over $sim$10 yr prior to day $sim$8000. Possibilities may include the case that the shock is now propagating beyond a density peak of the inner ring. We briefly discuss some possible implications on the nature of the progenitor and the future prospects of our {it Chandra} monitoring observations.
We investigate the nature of the accelerated particles responsible for the production of the gamma-ray emission observed from the middle-aged supernova remnant (SNR) HB 21. The analysis of more than nine years of Fermi LAT data leads to the observati on of an extended emission positionally in agreement with the SNR HB 21. The bulk of this gamma-ray emission is detected from the remnant; photons up to $sim$10,GeV show clear evidence of curvature at the lower energies. The remnant is characterized by an extension of $0^{circ}.83$, that is, 30% smaller than claimed in previous studies. The increased statistics allows us also to resolve a point-like source at the edge of the remnant, in proximity to a molecular cloud of the Cyg OB7 complex. In the southern part of the remnant, a hint of an additional gamma-ray excess in correspondence to shocked molecular clouds is observed. The spectral energy distribution of the SNR shows evidence of a break around 400 MeV, which can be properly fitted within both the hadronic and leptonic scenario. The pion-decay mechanism reproduces well the gamma rays, postulating a proton spectrum with a slope $sim 2.5$ and with a steepening around tens of GeV, which could be explained by the energy-dependent escape of particles from the remnant. In the leptonic scenario the electron spectrum within the SNR matches closely the locally measured spectrum. This remarkable and novel result shows that SNR HB 21 could be a direct contributor to the population of Galactic electrons. In the leptonic scenario, we find that the local electron spectrum with a break around 2 GeV, closely evokes the best-fitting parental spectrum within this SNR. If such a scenario is confirmed, this would indicate that the SNR might be a source of Galactic background electrons.
170 - Masha Lakicevic 2012
The proximity of core-collapse Supernova 1987A (SN1987A) in the Large Magellanic Cloud (LMC) and its rapid evolution make it a unique case study of the development of a young supernova remnant. We aim at resolving the remnant of SN1987A for the first time in the 3-mm band (at 94 GHz). We observed the source at 3-mm wavelength with a 750-m configuration of the Australia Telescope Compact Array (ATCA). We compare the image with a recent 3-cm image and with archival X-ray images. We present a diffraction-limited image with a resolution of 0.7, revealing the ring structure seen at lower frequencies and at other wavebands. The emission peaks in the eastern part of the ring. The 3-mm image bears resemblance to early X-ray images (from 1999-2000). We place an upper limit of 1 mJy (2 sigma) on any discrete source of emission in the centre (inside of the ring). The integrated flux density at 3 mm has doubled over the six years since the previous observations at 3 mm. At 3 mm - i.e. within the operational domain of the Atacama Large Millimeter/submillimeter Array (ALMA) - SN1987A appears to be dominated by synchrotron radiation from the inner rim of the equatorial ring, characterised by moderately-weak shocks. There is no clear sign of emission of a different nature, but the current limits do not rule out such component altogether.
The expanding remnant from SN 1987A is an excellent laboratory for investigating the physics of supernovae explosions. There are still a large number of outstanding questions, such the reason for the asymmetric radio morphology, the structure of the pre-supernova environment, and the efficiency of particle acceleration at the supernova shock. We explore these questions using three-dimensional simulations of the expanding remnant between days 820 and 10,000 after the supernova. We combine a hydrodynamical simulation with semi-analytic treatments of diffusive shock acceleration and magnetic field amplification to derive radio emission as part of an inverse problem. Simulations show that an asymmetric explosion, combined with magnetic field amplification at the expanding shock, is able to replicate the persistent one-sided radio morphology of the remnant. We use an asymmetric Truelove & McKee progenitor with an envelope mass of $10 M_{sun}$ and an energy of $1.5 times 10^{44} J$. A termination shock in the progenitors stellar wind at a distance of $0farcs43-0farcs51$ provides a good fit to the turn on of radio emission around day 1200. For the Htextsc{ii} region, a minimum distance of $0farcs63pm0farcs01$ and maximum particle number density of $(7.11pm1.78) times 10^7$ m$^{-3}$ produces a good fit to the evolving average radius and velocity of the expanding shocks from day 2000 to day 7000 after explosion. The model predicts a noticeable reduction, and possibly a temporary reversal, in the asymmetric radio morphology of the remnant after day 7000, when the forward shock left the eastern lobe of the equatorial ring.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا