ترغب بنشر مسار تعليمي؟ اضغط هنا

Coexistence of superconductivity and density wave in $mathrm{Ba_2Ti_2Fe_2As_4O}$: an optical spectroscopy study

466   0   0.0 ( 0 )
 نشر من قبل Nan Lin Wang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed an optical spectroscopy measurement on single crystals of $mathrm{Ba_2Ti_2Fe_2As_4O}$, which is a newly discovered superconductor showing a coexistence of superconductivity and density wave order. The study reveals a spectral change related to the formation density wave energy gap below $T_{DW}approx$125 K, leading to the removal of about half of the multiple Fermi surface sheets. The ratio of 2$Delta_{DW}$/$k_B T_{DW}approx$ 11.9 is considerably larger than the mean-field value based on the weak-coupling BCS theory. At the lowest temperature in the superconducting state, we observed opening of superconducting energy gaps $Delta_1(0) =3.4$ meV and $Delta_2(0)=7.9$ meV. The properties of superconducting state in $mathrm{Ba_2Ti_2Fe_2As_4O}$ are similar to that in $mathrm{BaFe_{1.85}Co_{0.15}As_2}$.

قيم البحث

اقرأ أيضاً

The coexistence of charge density wave (CDW) and superconductivity in tantalum disulfide (2H-TaS$_2$) at ambient pressure, is boosted by applying hydrostatic pressures up to 30GPa, thereby inducing a typical dome-shaped superconducting phase. The amb ient pressure CDW ground state which begins at TCDW = 76 K, with critically small Fermi surfaces, was found to be fully suppressed at Pc = 8.7GPa. Around Pc, we observe a superconducting dome with a maximum superconducting transition temperature Tc = 9.1 K. First-principles calculations of the electronic structure predict that, under ambient conditions, the undistorted structure is characterized by a phonon instability at finite momentum close to the experimental CDW wave vector. Upon compression, this instability is found to disappear, indicating the suppression of CDW order. The calculations reveal an electronic topological transition (ETT), which occurs before the suppression of the phonon instability, suggesting that the ETT alone is not directly causing the structural change in the system. The temperature dependence of the first vortex penetration field has been experimentally obtained by two independent methods and the corresponding lower critical field H$_{c1}$ was deduced. While a d wave and single-gap BCS prediction cannot describe our H$_{c1}$ experiments, the temperature dependence of the H$_{c1}$ can be well described by a single-gap anisotropic s-wave order parameter.
115 - A. F. Fang , X. B. Wang , P. Zheng 2014
Sr3Ir4Sn13 is an interesting compound showing a coexistence of structural phase transition and superconductivity. The structural phase transition at 147 K leads to the formation of a superlattice. We performed optical spectroscopy measurements across the structural phase transition on single crystal sample of Sr3Ir4Sn13. The optical spectroscopy study reveals an unusual temperature induced spectral weight transfer over broad energy scale, yielding evidence for the presence of electron correlation effect. Below the structural phase transition temperature an energy gap-like suppression in optical conductivity was observed, leading to the removal of partial itinerant carriers near Fermi level. Unexpectedly, the suppression appears at much higher energy scale than that expected for a usual charge density wave phase transition.
103 - Y. Zhang , J. Wei , H. W. Ou 2008
The nature of spin-density wave and its relation with superconductivity are crucial issues in the newly discovered Fe-based high temperature superconductors. Particularly it is unclear whether the superconducting phase and spin density wave (SDW) are truly exclusive from each other as suggested by certain experiments. With angle resolved photoemission spectroscopy, we here report exchange splittings of the band structures in Sr1-xKxFe2As2 (x=0,0.1,0.2), and the non-rigid-band behaviors of the splitting. Our data on single crystalline superconducting samples unambiguously prove that SDW and superconductivity could coexist in iron-pnictides.
165 - L. Li , Z. R. Yang , Z. T. Zhang 2011
High-quality single crystals of K0.8Fe2Se1.4S0.4 are successfully synthesized by self-flux method with the superconducting transition temperatures Tconset = 32.8 K and Tczero = 31.2 K. In contrast to external pressure effect on superconductivity, the substitution of S for Se does not suppress Tc, which suggests that chemical doping may mainly modulate the anion height from Fe-layer rather than compressing interlayer distance. The investigation of the micromagnetism by electron spin resonance shows clear evidence for strong spin fluctuation at temperatures above Tc. Accompanied by the superconducting feature spectra, a novel resonance signal develops gradually upon cooling below Tc, indicating the coexistence of superconductivity and magnetism in K0.8Fe2Se1.4S0.4 crystal.
111 - Li-Han Chen , Da Wang , Yi Zhou 2019
We investigate in underdoped cuprates possible coexistence of the superconducting (SC) order at zero momentum and pair density wave (PDW) at momentum ${bf Q}=(pi, pi)$ in the presence of a Neel order. By symmetry, the $d$-wave uniform singlet pairing $dS_0$ can coexist with the $d$-wave triplet PDW $dT_{bf Q}$, and the $p$-wave singlet PDW $pS_{bf Q}$ can coexist with the $p$-wave uniform triplet $pT_0$. At half filling, we find the novel $pS_{bf Q}+pT_0$ state is energetically more favorable than the $dS_0+dT_{bf Q}$ state. At finite doping, however, the $dS_0+dT_{bf Q}$ state is more favorable. In both types of states, the variational triplet parameters, $dT_{bf Q}$ and $pT_0$, are of secondary significance. Our results point to a fully symmetric $mathrm{Z_2}$ quantum spin liquid with spinon Fermi surface in proximity to the Neel order at zero doping, and to intertwined $d$-wave triplet PDW fluctuations and spin moment fluctuations along with the dominant $d$-wave singlet SC at finite doping. The results are obtained by variational quantum Monte Carlo simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا