ترغب بنشر مسار تعليمي؟ اضغط هنا

Interfacial Dzyaloshinskii-Moriya interaction in TaCo20Fe60B20MgO nanowires

523   0   0.0 ( 0 )
 نشر من قبل Roberto Lo Conte
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report current-induced domain wall motion (CIDWM) in TaCo20Fe60B20MgO nanowires. Domain walls are observed to move against the electron flow when no magnetic field is applied, while a field along the nanowires strongly affects the domain wall motion direction and velocity. A symmetric effect is observed for up-down and down-up domain walls. This indicates the presence of right-handed domain walls, due to a Dzyaloshinskii-Moriya interaction (DMI) with a DMI coefficient D=+0.06 mJ/m2. The positive DMI coefficient is interpreted to be a consequence of boron diffusion into the tantalum buffer layer during annealing. In a PtCo68Fe22B10MgO nanowire CIDWM along the electron flow was observed, corroborating this interpretation. The experimental results are compared to 1D-model simulations including the effects of pinning. This advanced modelling allows us to reproduce the experiment outcomes and reliably extract a spin-Hall angle {theta}SH=-0.11 for Ta in the nanowires, showing the importance of an analysis that goes beyond the currently used model for perfect nanowires.



قيم البحث

اقرأ أيضاً

The Dzyaloshinskii-Moriya interaction (DMI), being one of the origins for chiral magnetism, is currently attracting huge attention in the research community focusing on applied magnetism and spintronics. For future applications an accurate measuremen t of its strength is indispensable. In this work, we present a review of the state of the art of measuring the coefficient $D$ of the Dzyaloshinskii-Moriya interaction, the DMI constant, focusing on systems where the interaction arises from the interface between two materials. The measurement techniques are divided into three categories: a) domain wall based measurements, b) spin wave based measurements and c) spin orbit torque based measurements. We give an overview of the experimental techniques as well as their theoretical background and models for the quantification of the DMI constant $D$. We analyze the advantages and disadvantages of each method and compare $D$ values in different stacks. The review aims to obtain a better understanding of the applicability of the different techniques to different stacks and of the origin of apparent disagreement of literature values.
The interfacial Dzyaloshinskii-Moriya interaction (iDMI) is attracting great interests for spintronics. An iDMI constant larger than 3 mJ/m^2 is expected to minimize the size of skyrmions and to optimize the DW dynamics. In this study, we experimenta lly demonstrate an enhanced iDMI in Pt/Co/X/MgO ultra-thin film structures with perpendicular magnetization. The iDMI constants were measured using a field-driven creep regime domain expansion method. The enhancement of iDMI with an atomically thin insertion of Ta and Mg is comprehensively understood with the help of ab-initio calculations. Thermal annealing has been used to crystallize the MgO thin layer for improving tunneling magneto-resistance (TMR), but interestingly it also provides a further increase of the iDMI constant. An increase of the iDMI constant up to 3.3 mJ/m^2 is shown, which could be promising for the scaling down of skyrmion electronics.
Chiral spin textures at the interface between ferromagnetic and heavy nonmagnetic metals, such as Neel-type domain walls and skyrmions, have been studied intensively because of their great potential for future nanomagnetic devices. The Dyzaloshinskii -Moriya interaction (DMI) is an essential phenomenon for the formation of such chiral spin textures. In spite of recent theoretical progress aiming at understanding the microscopic origin of the DMI, an experimental investigation unravelling the physics at stake is still required. Here, we experimentally demonstrate the close correlation of the DMI with the anisotropy of the orbital magnetic moment and with the magnetic dipole moment of the ferromagnetic metal. The density functional theory and the tight-binding model calculations reveal that asymmetric electron occupation in orbitals gives rise to this correlation.
The interface between a ferromagnet (FM) or antiferromagnet (AFM) and a heavy metal (HM) results in an antisymmetric exchange interaction known as the interfacial Dzyaloshinskii-Moriya interaction (iDMI) which favors non-collinear spin configurations . The iDMI is responsible for stabilizing noncollinear spin textures such as skyrmions in materials with bulk inversion symmetry. Interfacial DMI values have been previously determined theoretically and experimentally for FM/HM interfaces, and, in this work, values are calculated for the metallic AFM MnPt and the insulating AFM NiO. The heavy metals considered are W, Re, and Au. The effects of the AFM and HM thicknesses are determined. The iDMI values of the MnPt heterolayers are comparable to those of the common FM materials, and those of NiO are lower.
The longitudinal spin-Seebeck effect (SSE) in magnetic insulator$|$non-magnetic metal heterostructures has been theoretically studied primarily with the assumption of an isotropic interfacial exchange coupling. Here, we present a general theory of th e SSE in the case of an antisymmetric Dzyaloshinskii-Moriya interaction (DMI) at the interface, in addition to the usual Heisenberg form. We numerically evaluate the dependence of the spin current on the temperature and bulk DMI using a pyrochlore iridate as a model insulator with all-in all-out (AIAO) ground state configuration. We also compare the results of different crystalline surfaces arising from different crystalline orientations and conclude that the relative angles between the interfacial moments and Dzyaloshinskii-Moriya vectors play a significant role in the spin transfer. Our work extends the theory of the SSE by including the anisotropic nature of the interfacial Dzyaloshinskii-Moriya exchange interaction in magnetic insulator$|$non-magnetic metal heterostructures and can suggest possible materials to optimize the interfacial spin transfer in spintronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا