ﻻ يوجد ملخص باللغة العربية
An $N$-channel spinless p-wave superconducting wire is known to go through a series of $N$ topological phase transitions upon increasing the disorder strength. Here, we show that at each of those transitions the density of states shows a Dyson singularity $ u(varepsilon) propto varepsilon^{-1}|lnvarepsilon|^{-3} $, whereas $ u(varepsilon) propto varepsilon^{|alpha|-1}$ has a power-law singularity for small energies $varepsilon$ away from the critical points. Using the concept of superuniversality [Gruzberg, Read, and Vishveshwara, Phys. Rev. B 71, 245124 (2005)], we are able to relate the exponent $alpha$ to the wires transport properties at zero energy and, hence, to the mean free path $l$ and the superconducting coherence length $xi$.
In this work, we investigate the effect of disorder on the topological properties of multichannel superconductor nanowires. While the standard expectation is that the spectral gap is closed and opened at transitions that change the topological index
One-dimensional lattice with strong spin-orbit interactions (SOI) and Zeeman magnetic field is shown to lead to the formation of a helical charge-density wave (CDW) state near half-filling. Interplay of the magnetic field, SOI constants and the CDW g
We show that the resistivity rho(T) of disordered ferromagnets near, and above, the Curie temperature T_c generically exhibits a stronger anomaly than the scaling-based Fisher-Langer prediction. Treating transport beyond the Boltzmann description, we
Weyl semimetals are a newly discovered class of materials that host relativistic massless Weyl fermions as their low-energy bulk excitations. Among this new class of materials, there exist two general types of semimetals that are of particular intere
We propose a new setup for creating Majorana bound states in a two-dimensional electron gas Josephson junction. Our proposal relies exclusively on a supercurrent parallel to the junction as a mechanism of breaking time-reversal symmetry. We show that