ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Control of Quantum Measurement

110   0   0.0 ( 0 )
 نشر من قبل Daniel Egger
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pulses to steer the time evolution of quantum systems can be designed with optimal control theory. In most cases it is the coherent processes that can be controlled and one optimizes the time evolution towards a target unitary process, sometimes also in the presence of non-controllable incoherent processes. Here we show how to extend the GRAPE algorithm in the case where the incoherent processes are controllable and the target time evolution is a non-unitary quantum channel. We perform a gradient search on a fidelity measure based on Choi matrices. We illustrate our algorithm by optimizing a phase qubit measurement pulse. We show how this technique can lead to large measurement contrast close to 99%. We also show, within the validity of our model, that this algorithm can produce short 1.4 ns pulses with 98.2% contrast.

قيم البحث

اقرأ أيضاً

98 - E. Rasanen , E. J. Heller 2012
Increasing fidelity is the ultimate challenge of quantum information technology. In addition to decoherence and dissipation, fidelity is affected by internal imperfections such as impurities in the system. Here we show that the quality of quantum rev ival, i.e., periodic recurrence in the time evolution, can be restored almost completely by coupling the distorted system to an external field obtained from quantum optimal control theory. We demonstrate the procedure with wave-packet calculations in both one- and two-dimensional quantum wells, and analyze the required physical characteristics of the control field. Our results generally show that the inherent dynamics of a quantum system can be idealized at an extremely low cost.
We study the problem of preparing a quantum many-body system from an initial to a target state by optimizing the fidelity over the family of bang-bang protocols. We present compelling numerical evidence for a universal spin-glass-like transition cont rolled by the protocol time duration. The glassy critical point is marked by a proliferation of protocols with close-to-optimal fidelity and with a true optimum that appears exponentially difficult to locate. Using a machine learning (ML) inspired framework based on the manifold learning algorithm t-SNE, we are able to visualize the geometry of the high-dimensional control landscape in an effective low-dimensional representation. Across the transition, the control landscape features an exponential number of clusters separated by extensive barriers, which bears a strong resemblance with replica symmetry breaking in spin glasses and random satisfiability problems. We further show that the quantum control landscape maps onto a disorder-free classical Ising model with frustrated nonlocal, multibody interactions. Our work highlights an intricate but unexpected connection between optimal quantum control and spin glass physics, and shows how tools from ML can be used to visualize and understand glassy optimization landscapes.
Quantum systems are promising candidates for sensing of weak signals as they can provide unrivaled performance when estimating parameters of external fields. However, when trying to detect weak signals that are hidden by background noise, the signal- to-noise-ratio is a more relevant metric than raw sensitivity. We identify, under modest assumptions about the statistical properties of the signal and noise, the optimal quantum control to detect an external signal in the presence of background noise using a quantum sensor. Interestingly, for white background noise, the optimal solution is the simple and well-known spin-locking control scheme. We further generalize, using numerical techniques, these results to the background noise being a correlated Lorentzian spectrum. We show that for increasing correlation time, pulse based sequences such as CPMG are also close to the optimal control for detecting the signal, with the crossover dependent on the signal frequency. These results show that an optimal detection scheme can be easily implemented in near-term quantum sensors without the need for complicated pulse shaping.
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexit y, however, this control is still sub-optimal. Optimal control theory is the ideal candidate to bridge the gap between early stage and optimal experimental protocols, particularly since it was extended to encompass many-body quantum dynamics. Here, we experimentally demonstrate optimal control applied to two dynamical processes subject to interactions: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We show theoretically that these transformations can be made fast and robust with respect to perturbations, including temperature and atom number fluctuations, resulting in a good agreement between theoretical predictions and experimental results.
88 - M.R. James 2003
The importance of feedback control is being increasingly appreciated in quantum physics and applications. This paper describes the use of optimal control methods in the design of quantum feedback control systems, and in particular the paper formulate s and solves a risk-sensitive optimal control problem. The resulting risk-sensitive optimal control is given in terms of a new unnormalized conditional state, whose dynamics include the cost function used to specify the performance objective. The risk-sensitive conditional dynamic equation describes the evolution of our {em knowledge} of the quantum system tempered by our {em purpose} for the controlled quantum system. Robustness properties of risk-sensitive controllers are discussed, and an example is provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا