ترغب بنشر مسار تعليمي؟ اضغط هنا

A second order time discretization of the solution of the non-linear filtering problem

53   0   0.0 ( 0 )
 نشر من قبل Salvador Ortiz-Latorre
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The solution of the continuous time filtering problem can be represented as a ratio of two expectations of certain functionals of the signal process that are parametrized by the observation path. We introduce a new time discretisation of these functionals corresponding to a chosen partition of the time interval and show that the convergence rate of discretisation is proportional with the square of the mesh of the partition.

قيم البحث

اقرأ أيضاً

The solution of the continuous time filtering problem can be represented as a ratio of two expectations of certain functionals of the signal process that are parametrized by the observation path. We introduce a class of discretization schemes of thes e functionals of arbitrary order. The result generalizes the classical work of Picard, who introduced first order discretizations to the filtering functionals. For a given time interval partition, we construct discretization schemes with convergence rates that are proportional with the $m$-power of the mesh of the partition for arbitrary $minmathbb{N}$. The result paves the way for constructing high order numerical approximation for the solution of the filtering problem.
The detailed construction of the general solution of a second order non-homogenous linear operatordifference equation is presented. The wide applicability of such an equation as well as the usefulness of its resolutive formula is shown by studying so me applications belonging to different mathematical contexts.
115 - Aurelien Deya 2021
We study a full discretization scheme for the stochastic linear heat equation begin{equation*}begin{cases}partial_t langlePsirangle = Delta langlePsirangle +dot{B}, , quad tin [0,1], xin mathbb{R}, langlePsirangle_0=0, ,end{cases}end{equation*} when $dot{B}$ is a very emph{rough space-time fractional noise}. The discretization procedure is divised into three steps: $(i)$ regularization of the noise through a mollifying-type approach; $(ii)$ discretization of the (smoothened) noise as a finite sum of Gaussian variables over rectangles in $[0,1]times mathbb{R}$; $(iii)$ discretization of the heat operator on the (non-compact) domain $[0,1]times mathbb{R}$, along the principles of Galerkin finite elements method. We establish the convergence of the resulting approximation to $langlePsirangle$, which, in such a specific rough framework, can only hold in a space of distributions. We also provide some partial simulations of the algorithm.
This paper investigates sufficient conditions for a Feynman-Kac functional up to an exit time to be the generalized viscosity solution of a Dirichlet problem. The key ingredient is to find out the continuity of exit operator under Skorokhod topology, which reveals the intrinsic connection between overfitting Dirichlet boundary and fine topology. As an application, we establish the sub and supersolutions for a class of non-stationary HJB (Hamilton-Jacobi-Bellman) equations with fractional Laplacian operator via Feynman-Kac functionals associated to $alpha$-stable processes, which help verify the solvability of the original HJB equation.
We demonstrate, both theoretically and experimentally, the concept of non-linear second-order topological insulators, a class of bulk insulators with quantized Wannier centers and a bulk polarization directly controlled by the level of non-linearity. We show that one-dimensional edge states and zero-dimensional corner states can be induced in a trivial crystal insulator made of evanescently coupled resonators with linear and nonlinear coupling coefficients, simply by tuning the excitation intensity. This allows global external control over topological phase transitions and switching to a phase with non-zero bulk polarization, without requiring any structural or geometrical changes. We further show how these non-linear effects enable dynamic tuning of the spectral properties and localization of the topological edge and corner states. Such self-induced second-order topological insulators, which can be found and implemented in a wide variety of physical platforms ranging from electronics to microwaves, acoustics, and optics, hold exciting promises for reconfigurable topological energy confinement, power harvesting, data storage, and spatial management of high-intensity fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا