ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing few-excitation eigenstates of interacting atoms on a lattice by observing their collective light emission in the far field

80   0   0.0 ( 0 )
 نشر من قبل Paolo Longo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The collective emission from a one-dimensional chain of interacting two-level atoms coupled to a common electromagnetic reservoir is investigated. We derive the systems dissipative few-excitation eigenstates, and analyze their static properties, including the collective dipole moments and branching ratios between different eigenstates. Next, we study the dynamics, and characterize the light emitted or scattered by such a system via different far-field observables. Throughout the analysis, we consider spontaneous emission from an excited state as well as two different pump field setups, and contrast the two extreme cases of non-interacting and strongly interacting atoms. For the latter case, the two-excitation submanifold contains a two-body bound state, and we find that the two cases lead to different dynamics and far-field signatures. Finally we exploit these signatures to characterize the wavefunctions of the collective eigenstates. For this, we identify a direct relation between the collective branching ratio and the momentum distribution of the collective eigenstates wavefunction. This provides a method to proof the existence of certain collective eigenstates and to access their wave function without the need to individually address and/or manipulate single atoms.

قيم البحث

اقرأ أيضاً

Enhancement of the sensitivities of optical magnetometers, atomic clocks and atom interferometers and other quantum metrology devices requires introducing new physical processes to improve on their present achievements. Many body collective correlati ons among the atoms, spins or, in general, quantum systems may prove to be a suitable method. As these correlations introduce interference terms in the intensity of the scattering amplitudes, they may enhance the signal as $N(N-1)$ for N correlated quantum systems. These correlations enhance the signal to noise ratio by a factor of $N^2$ and contribute to better sensitivity in quantum metrology. Moreover atomic correlation may provide quantum noise limit, Heisenberg limit. In the present communication excitation exchange induced by photons in a cavity between two atoms is calculated and clearly exhibits correlation and collective effects. A novel operator is introduced that expresses photon-induced excitation exchange that takes in account energy conservation, $V_{ij}=hat{a}^dagsigma_isigma_j^daghat{a}$, $sigma_i=left|grightrangle_{i}leftlangle eright|_{i}$ is lowering operator of $i$-th atom, and $hat{a}^dag,hat{a}$ are photon creation and annihilation operators. Here $i$ and $j$ stand for two atoms. This operator describes real or virtual photon assisted dipole-dipole interaction. Moreover, it conserves the total number of excitations in the joint em field and the quantum system. Experimental challenges are suggested.
111 - A. Hopper , P. F. Barker 2020
Near-field, radially symmetric optical potentials centred around a levitated nanosphere can be used for sympathetic cooling and for creating a bound nanosphere-atom system analogous to a large molecule. We demonstrate that the long range, Coulomb-lik e potential produced by a single blue detuned field increases the collisional cross-section by eight orders of magnitude, allowing fast sympathetic cooling of a trapped nanosphere to microKelvin temperatures using cold atoms. By using two optical fields to create a combination of repulsive and attractive potentials, we demonstrate that a cold atom can be bound to a nanosphere creating a new levitated hybrid quantum system suitable for exploring quantum mechanics with massive particles.
Ordered atomic arrays trapped in the vicinity of nanoscale waveguides offer original light-matter interfaces, with applications to quantum information and quantum non-linear optics. Here, we study the decay dynamics of a single collective atomic exci tation coupled to a waveguide in different configurations. The atoms are arranged as a linear array and only a segment of them is excited to a superradiant mode and emits light into the waveguide. Additional atomic chains placed on one or both sides play a passive role, either reflecting or absorbing this emission. We show that when varying the geometry, such a one-dimensional atomic system could be able to redirect the emitted light, to directionally reduce or enhance it, and in some cases to localize it in a cavity formed by the atomic mirrors bounding the system.
We demonstrate spatially resolved, coherent excitation of Rydberg atoms on an atom chip. Electromagnetically induced transparency (EIT) is used to investigate the properties of the Rydberg atoms near the gold coated chip surface. We measure distance dependent shifts (~10 MHz) of the Rydberg energy levels caused by a spatially inhomogeneous electric field. The measured field strength and distance dependence is in agreement with a simple model for the electric field produced by a localized patch of Rb adsorbates deposited on the chip surface during experiments. The EIT resonances remain narrow (< 4 MHz) and the observed widths are independent of atom-surface distance down to ~20 mum, indicating relatively long lifetime of the Rydberg states. Our results open the way to studies of dipolar physics, collective excitations, quantum metrology and quantum information processing involving interacting Rydberg excited atoms on atom chips.
We explore the potential of a static electric field to induce Anderson localization of light in a large three-dimensional (3D) cloud of randomly distributed, immobile atoms with a degenerate ground state (total angular momentum $J_g = 0$) and a three -fold degenerate excited state ($J_e = 1$). We study both the spatial structure of quasimodes of the atomic cloud and the scaling of the Thouless number with the size of the cloud. Our results indicate that unlike the static magnetic field, the electric field does not induce Anderson localization of light by atoms. We explain this conclusion by the incomplete removal of degeneracy of the excited atomic state by the field and the relatively strong residual dipole-dipole coupling between atoms which is weaker than in the absence of external fields but stronger than in the presence of a static magnetic field. A joint analysis of these results together with our previous results concerning Anderson localization of scalar waves and light suggests the existence of a critical strength of dipole-dipole interactions that should not be surpassed for Anderson localization to be possible in 3D.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا