ترغب بنشر مسار تعليمي؟ اضغط هنا

CoRoT-22 b: a validated 4.9 RE exoplanet in 10-day orbit

266   0   0.0 ( 0 )
 نشر من قبل Claire Moutou
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The CoRoT satellite has provided high-precision photometric light curves for more than 163,000 stars and found several hundreds of transiting systems compatible with a planetary scenario. If ground-based velocimetric observations are the best way to identify the actual planets among many possible configurations of eclipsing binary systems, recent transit surveys have shown that it is not always within reach of the radial-velocity detection limits. In this paper, we present a transiting exoplanet candidate discovered by CoRoT whose nature cannot be established from ground-based observations, and where extensive analyses are used to validate the planet scenario. They are based on observing constraints from radial-velocity spectroscopy, adaptive optics imaging and the CoRoT transit shape, as well as from priors on stellar populations, planet and multiple stellar systems frequency. We use the fully Bayesian approach developed in the PASTIS analysis software, and conclude that the planet scenario is at least 1400 times more probable than any other false positive scenario. The primary star is a metallic solar-like dwarf, with Ms = 1.099+-0.049 Msun and Rs = 1.136 (+0.038,-0.090) Rsun . The validated planet has a radius of Rp = 4.88 (+0.17,-0.39) RE and mass less than 49 ME. Its mean density is smaller than 2.56 g/cm^3 and orbital period is 9.7566+-0.0012 days. This object, called CoRoT-22 b, adds to a large number of validated Kepler planets. These planets do not have a proper measurement of the mass but allow statistical characterization of the exoplanet population.



قيم البحث

اقرأ أيضاً

The space telescope CoRoT searches for transiting extrasolar planets by continuously monitoring the optical flux of thousands of stars in several fields of view. We report the discovery of CoRoT-10b, a giant planet on a highly eccentric orbit (e=0.53 +/- 0.04) revolving in 13.24 days around a faint (V=15.22) metal-rich K1V star. We use CoRoT photometry, radial velocity observations taken with the HARPS spectrograph, and UVES spectra of the parent star to derive the orbital, stellar and planetary parameters. We derive a radius of the planet of 0.97 +/- 0.07 R_Jup and a mass of 2.75 +/- 0.16 M_Jup. The bulk density, rho_pl=3.70 +/- 0.83 g/cm^3, is ~2.8 that of Jupiter. The core of CoRoT-10b could contain up to 240 M_Earth of heavy elements. Moving along its eccentric orbit, the planet experiences a 10.6-fold variation in insolation. Owing to the long circularisation time, tau_circ > 7 Gyr, a resonant perturber is not required to excite and maintain the high eccentricity of CoRoT-10b.
We report the discovery of K2-98 b (EPIC 211391664 b), a transiting Neptune-sized planet monitored by the K2 mission during its campaign 5. We combine the K2 time-series data with ground-based photometric and spectroscopic follow-up observations to c onfirm the planetary nature of the object and derive its mass, radius, and orbital parameters. K2-98 b is a warm Neptune-like planet in a 10-day orbit around a V=12.2~mag F-type star with $M_star$=$ 1.074pm0.042$, $R_star$=$ 1.311 ^{+ 0.083} _{ - 0.048} $, and age of $5.2_{-1.0}^{+1.2}$~Gyr. We derive a planetary mass and radius of $M_mathrm{p}$=$ 32.2 pm 8.1 $ and $R_mathrm{p}$=$4.3^{+0.3}_{-0.2}$. K2-98 b joins the relatively small group of Neptune-sized planets whose both mass and radius have been derived with a precision better than 25 %. We estimate that the planet will be engulfed by its host star in $sim$3~Gyr, due to the evolution of the latter towards the red giant branch.
We report the discovery of the transiting exoplanet NGTS-12b by the Next Generation Transit Survey (NGTS). The host star, NGTS-12, is a V=12.38 mag star with an effective temperature of T$_{rm eff}$=$5690pm130$ K. NGTS-12b orbits with a period of $P= 7.53$d, making it the longest period planet discovered to date by the main NGTS survey. We verify the NGTS transit signal with data extracted from the TESS full-frame images, and combining the photometry with radial velocity measurements from HARPS and FEROS we determine NGTS-12b to have a mass of $0.208pm0.022$ M$_{J}$ and a radius of $1.048pm0.032$ R$_{J}$. NGTS-12b sits on the edge of the Neptunian desert when we take the stellar properties into account, highlighting the importance of considering both the planet and star when studying the desert. The long period of NGTS-12b combined with its low density of just $0.223pm0.029$ g cm$^{-3}$ make it an attractive target for atmospheric characterization through transmission spectroscopy with a Transmission Spectroscopy Metric of 89.4.
K2-291 (EPIC 247418783) is a solar-type star with a radius of R_star = 0.899 $pm$ 0.034 R_sun and mass of M_star=0.934 $pm$ 0.038 M_sun. From K2 C13 data, we found one super-Earth planet (R_p = 1.589+0.095-0.072 R_Earth) transiting this star on a sho rt period orbit (P = 2.225177 +6.6e-5 -6.8e-5 days). We followed this system up with adaptive-optic imaging and spectroscopy to derive stellar parameters, search for stellar companions, and determine a planet mass. From our 75 radial velocity measurements using HIRES on Keck I and HARPS-N on Telescopio Nazionale Galileo, we constrained the mass of EPIC 247418783b to M_p = 6.49 $pm$ 1.16 M_Earth. We found it necessary to model correlated stellar activity radial velocity signals with a Gaussian process in order to more accurately model the effect of stellar noise on our data; the addition of the Gaussian process also improved the precision of this mass measurement. With a bulk density of 8.84+2.50-2.03 g cm-3, the planet is consistent with an Earth-like rock/iron composition and no substantial gaseous envelope. Such an envelope, if it existed in the past, was likely eroded away by photo-evaporation during the first billion years of the stars lifetime.
We report the discovery of WASP-117b, the first planet with a period beyond 10 days found by the WASP survey. The planet has a mass of $M_p= 0.2755 pm 0.0089 , M_{J}$, a radius of $R_p= 1.021_{-0.065}^{+0.076}, R_{J}$ and is in an eccentric ($ e= 0.3 02 pm 0.023 $), $ 10.02165 pm 0.00055 $~d orbit around a main-sequence F9 star. The host stars brightness (V=10.15 mag) makes WASP-117 a good target for follow-up observations, and with a periastron planetary equilibrium temperature of $T_{eq}= 1225_{-39}^{+36}$ K and a low planetary mean density ($rho_p= 0.259_{-0.048}^{+0.054} , rho_{J}$) it is one of the best targets for transmission spectroscopy among planets with periods around 10 days. From a measurement of the Rossiter-McLaughlin effect, we infer a projected angle between the planetary orbit and stellar spin axes of $beta = -44 pm 11$ deg, and we further derive an orbital obliquity of $psi = 69.6 ^{+4.7}_{-4.1}$ deg. Owing to the large orbital separation, tidal forces causing orbital circularization and realignment of the planetary orbit with the stellar plane are weak, having had little impact on the planetary orbit over the system lifetime. WASP-117b joins a small sample of transiting giant planets with well characterized orbits at periods above ~8 days.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا