ﻻ يوجد ملخص باللغة العربية
Adding a second Kondo channel to heavy fermion materials reveals new exotic symmetry breaking phases associated with the development of Kondo coherence. In this paper, we review two such phases, the hastatic order associated with non-Kramers doublet ground states, where the two-channel nature of the Kondo coupling is guaranteed by virtual valence fluctuations to an excited Kramers doublet, and composite pair superconductivity, where the two channels differ by charge 2e and can be thought of as virtual valence fluctuations to a pseudo-isospin doublet. The similarities and differences between these two orders will be discussed, along with possible realizations in actinide and rare earth materials like URu2Si2 and NpPd5Al2.
We address the origin of the magnetic-field independent -|A| T^{1/2} term observed in the low-temperature resistivity of several As-based metallic systems of the PbFCl structure type. For the layered compound ZrAs_{1.58}Se_{0.39}, we show that vacanc
For a mobile spin-1/2 impurity, coupled antiferromagnetically to a one-dimensional gas of fermions, perturbative ideas have been used to argue in favor of two-channel Kondo behavior of the impurity spin. Here we combine general considerations and ext
To resolve the nature of the hidden order below 17.5,K in the heavy fermion compound URu$_2$Si$_2$, identifying which symmetries are broken below the hidden order transition is one of the most important steps. Several recent experiments on the electr
We study an impurity Anderson model to describe an iron phthalocyanine (FePc) molecule on Au(111), motivated by previous results of scanning tunneling spectroscopy (STS) and theoretical studies. The model hybridizes a spin doublet consisting in one h
We design a set of classical macroscopic electric circuits in which charge exhibits the mobility restrictions of fracton quasiparticles. The crucial ingredient in these circuits is a transformer, which induces currents between pairs of adjacent wires