ترغب بنشر مسار تعليمي؟ اضغط هنا

New moduli of smoothness: weighted DT moduli revisited and applied

55   0   0.0 ( 0 )
 نشر من قبل Kirill Kopotun
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce new moduli of smoothness for functions $fin L_p[-1,1]cap C^{r-1}(-1,1)$, $1le pleinfty$, $rge1$, that have an $(r-1)$st locally absolutely continuous derivative in $(-1,1)$, and such that $varphi^rf^{(r)}$ is in $L_p[-1,1]$, where $varphi(x)=(1-x^2)^{1/2}$. These moduli are equivalent to certain weighted DT moduli, but our definition is more transparent and simpler. In addition, instead of applying these weighted moduli to weighted approximation, which was the purpose of the original DT moduli, we apply these moduli to obtain Jackson-type estimates on the approximation of functions in $L_p[-1,1]$ (no weight), by means of algebraic polynomials. Moreover, we also prove matching inverse theorems thus obtaining constructive characterization of various smoothness classes of functions via the degree of their approximation by algebraic polynomials.

قيم البحث

اقرأ أيضاً

In this paper, we discuss various properties of the new modulus of smoothness [ omega^varphi_{k,r}(f^{(r)},t)_p := sup_{0 < hleq t}|mathcal W^r_{kh}(cdot) Delta_{hvarphi(cdot)}^k (f^{(r)},cdot)|_{L_p[-1,1]}, ] where $mathcal W_delta(x) = bigl((1-x-de ltavarphi(x)/2) (1+x-deltavarphi(x)/2)bigr)^{1/2}. $ Related moduli with more general weights are also considered.
We discuss some properties of the moduli of smoothness with Jacobi weights that we have recently introduced and that are defined as [ omega_{k,r}^varphi(f^{(r)},t)_{alpha,beta,p} :=sup_{0leq hleq t} left| {mathcal{W}}_{kh}^{r/2+alpha,r/2+beta}(cdot) Delta_{hvarphi(cdot)}^k (f^{(r)},cdot)right|_p ] where $varphi(x) = sqrt{1-x^2}$, $Delta_h^k(f,x)$ is the $k$th symmetric difference of $f$ on $[-1,1]$, [ {mathcal{W}}_delta^{xi,zeta} (x):= (1-x-deltavarphi(x)/2)^xi (1+x-deltavarphi(x)/2)^zeta , ] and $alpha,beta > -1/p$ if $0<p<infty$, and $alpha,beta geq 0$ if $p=infty$. We show, among other things, that for all $m, nin N$, $0<ple infty$, polynomials $P_n$ of degree $<n$ and sufficiently small $t$, begin{align*} omega_{m,0}^varphi(P_n, t)_{alpha,beta,p} & sim t omega_{m-1,1}^varphi(P_n, t)_{alpha,beta,p} sim dots sim t^{m-1}omega_{1,m-1}^varphi(P_n^{(m-1)}, t)_{alpha,beta,p} & sim t^m left| w_{alpha,beta} varphi^{m} P_n^{(m)}right|_{p} , end{align*} where $w_{alpha,beta}(x) = (1-x)^alpha (1+x)^beta$ is the usual Jacobi weight. In the spirit of Yingkang Hus work, we apply this to characterize the behavior of the polynomials of best approximation of a function in a Jacobi weighted $L_p$ space, $0<pleinfty$. Finally we discuss sharp Marchaud and Jackson type inequalities in the case $1<p<infty$.
229 - Yuuji Tanaka 2014
We prove a Freed-Uhlenbeck style generic smoothness theorem for the moduli space of solutions to the Vafa--Witten equations on a closed symplectic four-manifold by using a method developed by Feehan for the study of the $PU(2)$-monopole equations on smooth closed four-manifolds. We introduce a set of perturbation terms to the Vafa--Witten equations, and prove that the moduli space of solutions to the perturbed Vafa-Witten equations on a closed symplectic four-manifold for the structure group $SU(2)$ or $SO(3)$ is a smooth manifold of dimension zero for a generic choice of the perturbation parameters.
We calculate the homomorphism of the cohomology induced by the Krichever map of moduli spaces of curves into infinite-dimensional Grassmannian. This calculation can be used to compute the homology classes of cycles on moduli spaces of curves that are defined in terms of Weierstrass points.
182 - N.D. Lambert 2002
We discuss the worldvolume description of intersecting D-branes, including the metric on the moduli space of deformations. We impose a choice of static gauge that treats all the branes on an equal footing and describes the intersection of D-branes as an embedded special Lagrangian three-surface. Some explicit solutions to these equations are given and their interpretation in terms of a superpotential on moduli space is discussed. These surfaces arise from flat direction of a non-Abelian superpotential and imply the existance of non-compact G_2 manifolds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا