ﻻ يوجد ملخص باللغة العربية
We report an experimental and theoretical investigation of the electron-boson interaction in KFe2As2 by point-contact (PC) spectroscopy, model, and ab-initio LDA-based calculations for the standard electron-phonon Eliashberg function. The PC spectrum viz. the second derivative of the I - V characteristic of representative PC exhibits a pronounced maximum at about 20meV and surprisingly a featureless behavior at lower and higher energies. We discuss phonon and non-phonon (excitonic) mechanisms for the origin of this peak. Analysis of the underlying source of this peak may be important for the understanding of serious puzzles of superconductivity in this type of compounds.
Point-contact (PC) investigations on the title compound in the normal and superconducting (SC) state (Tc=10,6 K) are presented. The temperature dependence of the SC gap of TmNi2B2C determined from Andreev-reflection (AR) spectra using the standard si
The point-contact spectroscopy, in contrast to the tunneling spectrocopy, considers small electrical contacts with direct conductivity. In the normal state, it enables one to measure the spectral function of electron-boson interaction. In the superco
A century on from its discovery, a complete fundamental understanding of superconductivity is still missing. Considerable research efforts are currently devoted to elucidating mechanisms by which pairs of electrons can bind together through the media
We report on a study of the superconducting order parameter in Fe(Te$_{1-x}$Se$_{x}$) thin films (with different Se contents: x=0.3, 0.4, 0.5) by means of point-contact Andreev-reflection spectroscopy (PCARS). The PCARS spectra show reproducible evid
FeSe single crystals have been studied by soft point-contact Andreev-reflection spectroscopy. Superconducting gap features in the differential resistance dV/dI(V) of point contacts such as a characteristic Andreev-reflection double-minimum structure