ترغب بنشر مسار تعليمي؟ اضغط هنا

Plasma acceleration by the interaction of parallel propagating Alfven waves

97   0   0.0 ( 0 )
 نشر من قبل Fabrice Mottez
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Fabrice Mottez




اسأل ChatGPT حول البحث

It is shown that two circularly polarised Alfven waves that propagate along the ambient magnetic field in an uniform plasma trigger non oscillating electromagnetic field components when they cross each other. The non-oscilliating field components can accelerate ions and electrons with great efficiency. This work is based on particle-in-cell (PIC) numerical simulations and on analytical non-linear computations. The analytical computations are done for two counter-propagating monochromatic waves. The simulations are done with monochromatic waves and with wave packets. The simulations show parallel electromagnetic fields consistent with the theory, and they show that the particle acceleration result in plasma cavities and, if the waves amplitudes are high enough, in ion beams. These acceleration processes could be relevant in space plasmas. For instance, they could be at work in the auroral zone and in the radiation belts of the Earth magnetosphere. In particular, they may explain the origin of the deep plasma cavities observed in the Earth auroral zone.

قيم البحث

اقرأ أيضاً

127 - C. B. Wang , 2014
A scenario is proposed to explain the preferential heating of minor ions and differential streaming velocity between minor ions and protons observed in the solar corona and in the solar wind. It is demonstrated by test particle simulations that minor ions can be nearly fully picked up by intrinsic Alfven-cyclotron waves observed in the solar wind based on the observed wave energy density. Both high frequency ion-cyclotron waves and low frequency Alfven waves play crucial roles in the pickup process. A minor ion can first gain a high magnetic moment through the resonant wave-particle interaction with ion-cyclotron waves, and then this ion with a large magnetic moment can be trapped by magnetic mirror-like field structures in the presence of the lower-frequency Alfven waves. As a result, the ion is picked up by these Alfven-cyclotron waves. However, minor ions can only be partially picked up in the corona due to low wave energy density and low plasma beta. During the pickup process, minor ions are stochastically heated and accelerated by Alfven-cyclotron waves so that they are hotter and flow faster than protons. The compound effect of Alfven waves and ion-cyclotron waves is important on the heating and acceleration of minor ions. The kinetic properties of minor ions from simulation results are generally consistent with in situ and remote features observed in the solar wind and solar corona.
We carry out two-dimensional magnetohydrodynamic (MHD) simulations of an ensemble of Alfvenic fluctuations propagating in a structured, expanding solar wind including the presence of fast and slow solar wind streams. Using an appropriate expanding bo x model, the simulations incorporate the effects of fast-slow stream shear and compression and rarefaction self-consistently. We investigate the radial and longitudinal evolution of the cross-helicity, the total and residual energies and the power spectra of outward and inward Alfvenic fluctuations. The stream interaction is found to strongly affect the radial evolution of Alfvenic turbulence. The total energy in the Alfven waves is depleted within the velocity shear regions, accompanied by the decrease of the normalized cross-helicity. The presence of stream-compression facilitates this process. Residual energy fluctuates around zero due to the correlation and de-correlation between the inward/outward waves but no net growth or decrease of the residual energy is observed. The radial power spectra of the inward/outward Alfven waves show significant longitudinal variations. Kolmogorov-like spectra are developed only inside the fast and slow streams and when both the compression and shear are present. On the other hand, the spectra along the longitudinal direction show clear Kolmogorov-like inertial ranges in all cases.
140 - N. Bian , E. Kontar 2010
Previous numerical studies have identified phase mixing of low-frequency Alfven waves as a mean of parallel electric field amplification and acceleration of electrons in a collisionless plasma. Theoretical explanations are given of how this produces an amplification of the parallel electric field, and as a consequence, also leads to enhanced collisionless damping of the wave by energy transfer to the electrons. Our results are based on the properties of the Alfven waves in a warm plasma which are obtained from drift-kinetic theory, in particular, the rate of their electron Landau damping. Phase mixing in a collisionless low-$beta$ plasma proceeds in a manner very similar to the visco-resistive case, except for the fact that electron Landau damping is the primary energy dissipation channel. The time and length scales involved are evaluated. We also focus on the evolution of the parallel electric field and calculate its maximum value in the course of its amplification.
131 - D. Tsiklauri 2012
The process of particle acceleration by left-hand, circularly polarised inertial Alfven waves (IAW) in a transversely inhomogeneous plasma is studied using 3D particle-in-cell simulation. A cylindrical tube with, transverse to the background magnetic field, inhomogeneity scale of the order of ion inertial length is considered on which IAWs with frequency $0.3 omega_{ci}$ are launched that are allowed to develop three wavelength. As a result time-varying parallel electric fields are generated in the density gradient regions which accelerate electrons in the parallel to magnetic field direction. Driven perpendicular electric field of IAWs also heats ions in the transverse direction. Such numerical setup is relevant for solar flaring loops and earth auroral zone. This first, 3D, fully-kinetic simulation demonstrates electron acceleration efficiency in the density inhomogeneity regions, along the magnetic field, of the order of 45% and ion heating, in the transverse to the magnetic field direction, of 75%. The latter is a factor of two times higher than the previous 2.5D analogous study and is in accordance with solar flare particle acceleration observations. We find that the generated parallel electric field is localised in the density inhomogeneity region and rotates in the same direction and with the same angular frequency as the initially launched IAW. Our numerical simulations seem also to suggest that the knee often found in the solar flare electron spectra can alternatively be interpreted as the Landau damping (Cerenkov resonance effect) of IAWs due to the wave-particle interactions.
We perform 2.5D hybrid simulations with massless fluid electrons and kinetic particle-in-cell ions to study the temporal evolution of ion temperatures, temperature anisotropies and velocity distribution functions in relation to the dissipation and tu rbulent evolution of a broad-band spectrum of parallel and obliquely propagating Alfven-cyclotron waves. The purpose of this paper is to study the relative role of parallel versus oblique Alfven-cyclotron waves in the observed heating and acceleration of minor ions in the fast solar wind. We consider collisionless homogeneous multi-species plasma, consisting of isothermal electrons, isotropic protons and a minor component of drifting $alpha$ particles in a finite-$beta$ fast stream near the Earth. The kinetic ions are modeled by initially isotropic Maxwellian velocity distribution functions, which develop non-thermal features and temperature anisotropies when a broad-band spectrum of low-frequency non-resonant, $omega leq 0.34 Omega_p$, Alfven-cyclotron waves is imposed at the beginning of the simulations. The initial plasma parameter values, such as ion density, temperatures and relative drift speeds, are supplied by fast solar wind observations made by the textit{Wind} spacecraft at 1AU. The imposed broad-band wave spectra is left-hand polarized and resembles textit{Wind} measurements of Alfvenic turbulence in the solar wind. The imposed magnetic field fluctuations for all cases are within the inertial range of the solar wind turbulence and have a Kraichnan-type spectral slope $alpha=-3/2$. We vary the propagation angle from $theta= 0^circ$ to $theta=30^circ$ and $theta=60^circ$, and find that the minor ion heating is most efficient for the highly-oblique waves propagating at $60^circ$, whereas the protons exhibit perpendicular cooling at all propagation angles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا