ﻻ يوجد ملخص باللغة العربية
The second-type derivative nonlinear Schrodinger (DNLSII) equation was introduced as an integrable model in 1979. Very recently, the DNLSII equation has been shown by an experiment to be a model of the evolution of optical pulses involving self-steepening without concomitant self-phase-modulation. In this paper the $n$-fold Darboux transformation (DT) $T_n$ of the coupled DNLSII equations is constructed in terms of determinants. Comparing with the usual DT of the soliton equations, this kind of DT is unusual because $T_n$ includes complicated integrals of seed solutions in the process of iteration. By a tedious analysis, these integrals are eliminated in $T_n$ except the integral of the seed solution. Moreover, this $T_n$ is reduced to the DT of the DNLSII equation under a reduction condition. As applications of $T_n$, the explicit expressions of soliton, rational soliton, breather, rogue wave and multi-rogue wave solutions for the DNLSII equation are displayed.
In their reply arXiv:1408.2230, the authors corrected some inappropriate sentences and clarified misleading descriptions in their original manuscript arXiv:1407.5194v1.
We generate hierarchies of derivative nonlinear Schrodinger-type equations and their nonlocal extensions from Lie algebra splittings and automorphisms. This provides an algebraic explanation of some known reductions and newly established nonlocal reductions in integrable systems.
We propose a general integrable lattice system involving some free parameters, which contains known integrable lattice systems such as the Ablowitz-Ladik discretization of the nonlinear Schrodinger (NLS) equation as special cases. With a suitable cho
In this letter, for the discrete parity-time-symmetric nonlocal nonlinear Schr{o}dinger equation, we construct the Darboux transformation, which provides an algebraic iterative algorithm to obtain a series of analytic solutions from a known one. To i
The action of a Backlund-Darboux transformation on a spectral problem associated with a known integrable system can define a new discrete spectral problem. In this paper, we interpret a slightly generalized version of the binary Backlund-Darboux (or