ترغب بنشر مسار تعليمي؟ اضغط هنا

Power spectrum tomography of dark matter annihilation with local galaxy distribution

69   0   0.0 ( 0 )
 نشر من قبل Shin'ichiro Ando
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Shinichiro Ando




اسأل ChatGPT حول البحث

Cross-correlating the gamma-ray background with local galaxy catalogs potentially gives stringent constraints on dark matter annihilation. We provide updated theoretical estimates of sensitivities to the annihilation cross section from gamma-ray data with Fermi telescope and 2MASS galaxy catalogs, by elaborating the galaxy power spectrum and astrophysical backgrounds, and adopting the Markov-Chain Monte Carlo simulations. In particular, we show that taking tomographic approach by dividing the galaxy catalogs into more than one redshift slice will improve the sensitivity by a factor of a few to several. If dark matter halos contain lots of bright substructures, yielding a large annihilation boost (e.g., a factor of $sim$100 for galaxy-size halos), then one may be able to probe the canonical annihilation cross section for thermal production mechanism up to masses of $sim$700 GeV. Even with modest substructure boost (e.g., a factor of $sim$10 for galaxy-size halos), on the other hand, the sensitivities could still reach a factor of three larger than the canonical cross section for dark matter masses of tens to a few hundreds of GeV.


قيم البحث

اقرأ أيضاً

We revisit the computation of the extragalactic gamma-ray signal from cosmological dark matter annihilations. The prediction of this signal is notoriously model dependent, due to different descriptions of the clumpiness of the dark matter distributio n at small scales, responsible for an enhancement with respect to the smoothly distributed case. We show how a direct computation of this flux multiplier in terms of the nonlinear power spectrum offers a conceptually simpler approach and may ease some problems, such as the extrapolation issue. In fact very simple analytical recipes to construct the power spectrum yield results similar to the popular Halo Model expectations, with a straightforward alternative estimate of errors. For this specific application, one also obviates to the need of identifying (often literature-dependent) concepts entering the Halo Model, to compare different simulations.
The interaction properties of cold dark matter (CDM) particle candidates, such as those of weakly interacting massive particles (WIMPs), generically lead to the structuring of dark matter on scales much smaller than typical galaxies, potentially down to $sim 10^{-10}M_odot$. This clustering translates into a very large population of subhalos in galaxies and affects the predictions for direct and indirect dark matter searches (gamma rays and antimatter cosmic rays). In this paper, we elaborate on previous analytic works to model the Galactic subhalo population, while consistently with current observational dynamical constraints on the Milky Way. In particular, we propose a self-consistent method to account for tidal effects induced by both dark matter and baryons. Our model does not strongly rely on cosmological simulations as they can hardly be fully matched to the real Milky Way, but for setting the initial subhalo mass fraction. Still, it allows to recover the main qualitative features of simulated systems. It can further be easily adapted to any change in the dynamical constraints, and be used to make predictions or derive constraints on dark matter candidates from indirect or direct searches. We compute the annihilation boost factor, including the subhalo-halo cross-product. We confirm that tidal effects induced by the baryonic components of the Galaxy play a very important role, resulting in a local average subhalo mass density $lesssim 1%$ of the total local dark matter mass density, while selecting in the most concentrated objects and leading to interesting features in the overall annihilation profile in the case of a sharp subhalo mass function. Values of global annihilation boost factors range from $sim 2$ to $sim 20$, while the local annihilation rate is about half as much boosted.
The evolution of the Universe between inflation and the onset of big bang nucleosynthesis is difficult to probe and largely unconstrained. This ignorance profoundly limits our understanding of dark matter: we cannot calculate its thermal relic abunda nce without knowing when the Universe became radiation dominated. Fortunately, small-scale density perturbations provide a probe of the early Universe that could break this degeneracy. If dark matter is a thermal relic, density perturbations that enter the horizon during an early matter-dominated era grow linearly with the scale factor prior to reheating. The resulting abundance of substructure boosts the annihilation rate by several orders of magnitude, which can compensate for the smaller annihilation cross sections that are required to generate the observed dark matter density in these scenarios. In particular, thermal relics with masses less than a TeV that thermally and kinetically decouple prior to reheating may already be ruled out by Fermi-LAT observations of dwarf spheroidal galaxies. Although these constraints are subject to uncertainties regarding the internal structure of the microhalos that form from the enhanced perturbations, they open up the possibility of using gamma-ray observations to learn about the reheating of the Universe.
152 - Shmuel Nussinov 2009
We consider Wimp annihilations into monochromatic and continuous $gamma$s and the angular distribution of the resulting gammas. We discuss how the WIMP density profile can be reconstructed from the angular dependence of the photon flux.
We re-evaluate the extragalactic gamma-ray flux prediction from dark matter annihilation in the approach of integrating over the nonlinear matter power spectrum, extrapolated to the free-streaming scale. We provide an estimate of the uncertainty base d entirely on available N-body simulation results and minimal theoretical assumptions. We illustrate how an improvement in the simulation resolution, exemplified by the comparison between the Millennium and Millennium II simulations, affects our estimate of the flux uncertainty and we provide a best guess value for the flux multiplier, based on the assumption of stable clustering for the dark matter perturbations described as a collision-less fluid. We achieve results comparable to traditional Halo Model calculations, but with a much simpler procedure and a more general approach, as it relies only on one, directly measurable quantity. In addition we discuss the extension of our calculation to include baryonic effects as modeled in hydrodynamical cosmological simulations and other possible sources of uncertainty that would in turn affect indirect dark matter signals. Upper limit on the integrated power spectrum from supernovae lensing magnification are also derived and compared with theoretical expectations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا