ﻻ يوجد ملخص باللغة العربية
We have performed a photoemission spectroscopy (PES) study of CeM2Al10 (M = Fe, Ru, and Os) to directly observe the electronic structure involved in the unusual magnetic ordering. Soft X-ray resonant (SXR) PES provides spectroscopic evidence of the hybridization between conduction and Ce 4f electrons (c-f hybridization) and the order of the hybridization strength (Ru < Os < Fe). High-resolution (HR) PES of CeRu2Al10 and CeOs2Al10, as compared with that of CeFe2Al10, identifies two structures that can be ascribed to structures induced by the c-f hybridization and the antiferromagnetic ordering, respectively. Although the c-f hybridization-induced structure is a depletion of the spectral intensity (pseudogap) around the Fermi level (EF) with an energy scale of 20-30 meV, the structure related to the antiferromagnetic ordering is observed as a shoulder at approximately 10-11 meV within the pseudogap. The energies of the shoulder structures of CeRu2Al10 and CeOs2Al10 are approximately half of the optical gap (20 meV), indicating that EF is located at the midpoint of the gap.
We report on experimental data of the three-dimensional bulk Fermi surfaces of the layered strongly correlated Ca1.5Sr0.5RuO4 system. The measurements have been performed by means of hn-depndent bulk-sensitive soft x-ray angle-resolved photoemission
The occupancy of the 4f^n contributions in the Kondo semiconductors CeM2Al10(M = Ru, Os and Fe) has been quantitatively determined by means of bulk-sensitive hard x-ray photoelectron spectroscopy (HAXPES) on the Ce 3d core levels. Combining a configu
We report a combined study for the electronic structures of ferromagnetic CeAgSb$_2$ using soft X-ray absorption (XAS), magnetic circular dichroism (XMCD), and angle-resolved photoemission (ARPES) spectroscopies. The Ce $M_{4, 5}$ XAS spectra show ve
The origin of the interfacial perpendicular magnetic anisotropy (PMA) induced in the ultrathin Fe layer on the Au(111) surface was examined using synchrotron-radiation-based M{o}ssbauer spectroscopy (MS), X-ray magnetic circular dichroism (XMCD), and
We have employed the x-ray resonant magnetic scattering (XRMS) technique at the Ru $L_2$ edge of the Ba(Fe$_{1-x}$Ru$_x$)$_2$As$_2$ ($x = 0.205$) superconductor. We show that pronounced resonance enhancements at the Ru $L_2$ edge are observed at the