ﻻ يوجد ملخص باللغة العربية
The paper describes the commissioning of the experimental equipment and the machine studies required for the first spin-filtering experiment with protons at a beam kinetic energy of $49.3,$MeV in COSY. The implementation of a low-$beta$ insertion made it possible to achieve beam lifetimes of $tau_{rm{b}}=8000,$s in the presence of a dense polarized hydrogen storage-cell target of areal density $d_{rm t}=(5.5pm 0.2)times 10^{13},mathrm{atoms/cm^{2}}$. The developed techniques can be directly applied to antiproton machines and allow for the determination of the spin-dependent $bar{p}p$ cross sections via spin filtering.
The unique global feature of COSY is its ability to accelerate, store and manipulate polarized proton and deuteron beams. In the recent past, these beams have been used primarily for precision measurements, in particular in connection with the study
A new method to determine the spin tune is described and tested. In an ideal planar magnetic ring, the spin tune - defined as the number of spin precessions per turn - is given by $ u_s = gamma G$ (gamma is the Lorentz factor, $G$ the magnetic anomal
The nuclear spin-lattice relaxation time ($T_1$) of lanthanum and aluminum nuclei in a single crystal of lanthanum aluminate doped with neodymium ions is studied to estimate the feasibility of the dynamically polarized lanthanum target applicable to
A portable NMR polarimeter system has been developed to measure the polarization of a polarized Hydrogen-Deuteride (HD) target for hadron photoproduction experiments at SPring-8. The polarized HD target is produced at the Research Center for Nuclear
We propose a method for polarising antiprotons in a storage ring by means of a polarised positron beam moving parallel to the antiprotons. If the relative velocity is adjusted to $v/c approx 0.002$ the cross section for spin-flip is as large as about