ﻻ يوجد ملخص باللغة العربية
To a phenomenological core described by the Generalized Coherent State Model a set of interacting particles are coupled. Among the particle-core states one identifies a finite set which have the property that the angular momenta carried by the proton and neutron quadrupole bosons and the particles respectively, are mutually orthogonal. The magnetic properties of such states are studied. All terms of the model Hamiltonian satisfy the chiral symmetry except for the spin-spin interaction. There are four bands of two quasiparticle-core dipole states type, which exhibit properties which are specific for magnetic twin bands. Application is made for the isotopes $^{188, 190}$Os.
A set of interacting particles are coupled to a phenomenological core described using the generalized coherent state model. Among the particle-core states a finite set which have the property that the angular momenta carried by the proton and neutron
The experimentally observed $Delta I = 1$ doublet bands in some odd-odd nuclei are analyzed within the orthosymplectic extension of the Interacting Vector Boson Model (IVBM). A new, purely collective interpretation of these bands is given on the basi
The static quadrupole moments (SQMs) of nuclear chiral doublet bands are investigated for the first time taking the particle-hole configuration $pi(1h_{11/2}) otimes u(1h_{11/2})^{-1}$ with triaxial deformation parameters in the range $260^circ leq
The selfconsistent cranking approach is extended to the case of rotation about an axis which is tilted with respect to the principal axes of the deformed potential (Tilted Axis Cranking). Expressions for the energies and the intra bands electromagnet
The survey of different configurations near Fermi surface of 138Nd results in 12 lowest configurations, at both positive- and negative-deformations. These are calculated to be the energetically lowest configurations. The results show that, for both E