ترغب بنشر مسار تعليمي؟ اضغط هنا

Star formation relations and CO SLEDs across the J-ladder and redshift

50   0   0.0 ( 0 )
 نشر من قبل Thomas Greve Dr
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present FIR-CO luminosity relations ($log L_{rm FIR} = alpha log L_{rm CO} + beta$) for the full CO rotational ladder from J=1-0 to J=13-12 for 62 local (z < 0.1) (Ultra) Luminous Infrared Galaxies (LIRGs) using data from Herschel SPIRE-FTS and ground-based telescopes. We extend our sample to high redshifts (z > 1) by including 35 (sub)-millimeter selected dusty star forming galaxies from the literature with robust CO observations. The addition of luminous starbursts at high redshifts enlarge the range of the FIR-CO luminosity relations towards the high-IR-luminosity end while also significantly increasing the small amount of mid-/high-J CO line data available prior to Herschel. This new data-set (both in terms of IR luminosity and J-ladder) reveals linear FIR-CO luminosity relations ($alpha sim 1$) for J=1-0 up to J=5-4, with a nearly constant normalisation ($beta sim 2$). This is expected from the (also) linear FIR-(molecular line) relations found for the dense gas tracer lines (HCN and CS), as long as the dense gas mass fraction does not vary strongly within our (merger/starburst)-dominated sample. However from J=6-5 and up to J=13-12 we find an increasingly sub-linear slope and higher normalization constant with increasing J. We argue that these are caused by a warm (~100K) and dense ($>10^4{rm cm^{-3}}$) gas component whose thermal state is unlikely to be maintained by star formation powered far-UV radiation fields (and thus is no longer directly tied to the star formation rate). We suggest that mechanical heating (e.g., supernova driven turbulence and shocks), and not cosmic rays, is the more likely source of energy for this component. The global CO spectral line energy distributions (SLEDs), which remain highly excited from J=6-5 up to J=13-12, are found to be a generic feature of the (U)LIRGs in our sample, and further support the presence of this gas component.

قيم البحث

اقرأ أيضاً

We report the detection of far-infrared (FIR) CO rotational emission from nearby active galactic nuclei (AGN) and starburst galaxies, as well as several merging systems and Ultra-Luminous Infrared Galaxies (ULIRGs). Using Herschel-PACS, we have detec ted transitions in the J$_{upp}$ = 14 - 20 range ($lambda sim$ 130 - 185 $mu$m, $ u sim$ 1612 - 2300 GHz) with upper limits on (and in two cases, detections of) CO line fluxes up to J$_{upp}$ = 30. The PACS CO data obtained here provide the first well-sampled FIR extragalactic CO SLEDs for this range, and will be an essential reference for future high redshift studies. We find a large range in the overall SLED shape, even amongst galaxies of similar type, demonstrating the uncertainties in relying solely on high-J CO diagnostics to characterize the excitation source of a galaxy. Combining our data with low-J line intensities taken from the literature, we present a CO ratio-ratio diagram and discuss its potential diagnostic value in distinguishing excitation sources and physical properties of the molecular gas. The position of a galaxy on such a diagram is less a signature of its excitation mechanism, than an indicator of the presence (or absence) of warm, dense molecular gas. We then quantitatively analyze the CO emission from a subset of the detected sources with Large Velocity Gradient (LVG) radiative transfer models to fit the CO SLEDs. Using both single-component and two-component LVG models to fit the kinetic temperature, velocity gradient, number density and column density of the gas, we derive the molecular gas mass and the corresponding CO-to-H$_2$ conversion factor, $alpha_{CO}$, for each respective source. For the ULIRGs we find $alpha$ values in the canonical range 0.4 - 5 M$_odot$/(K kms$^{-1}$pc$^2$), while for the other objects, $alpha$ varies between 0.2 and 14.} Finally, we compare our best-fit LVG model ..
We investigate the balance of power between stars and AGN across cosmic history, based on the comparison between the infrared (IR) galaxy luminosity function (LF) and the IR AGN LF. The former corresponds to emission from dust heated by stars and AGN , whereas the latter includes emission from AGN-heated dust only. We find that at all redshifts (at least up to z~2.5), the high luminosity tails of the two LFs converge, indicating that the most infrared-luminous galaxies are AGN-powered. Our results shed light to the decades-old conundrum regarding the flatter high-luminosity slope seen in the IR galaxy LF compared to that in the UV and optical. We attribute this difference to the increasing fraction of AGN-dominated galaxies with increasing total infrared luminosity (L_IR). We partition the L_IR-z parameter space into a star-formation and an AGN-dominated region, finding that the most luminous galaxies at all epochs lie in the AGN-dominated region. This sets a potential `limit to attainable star formation rates, casting doubt on the abundance of `extreme starbursts: if AGN did not exist, L_IR>10^13 Lsun galaxies would be significantly rarer than they currently are in our observable Universe. We also find that AGN affect the average dust temperatures (T_dust) of galaxies and hence the shape of the well-known L_IR-T_dust relation. We propose that the reason why local ULIRGs are hotter than their high redshift counterparts is because of a higher fraction of AGN-dominated galaxies amongst the former group.
We present correlations between 9 CO transition ($J=4-3$ to $12-11$) and beam-matched far-infrared (Far-IR) luminosities ($L_{mathrm{FIR},,b}$) among 167 local galaxies, using {it{Herschel}} Spectral and Photometric Imaging Receiver Fourier Transform Spectrometer (SPIRE; FTS) spectroscopic data and Photoconductor Array Camera and Spectrometer (PACS) photometry data. We adopt entire-galaxy FIR luminosities ($L_{mathrm{FIR},,e}$) from the {it{IRAS}} Revised Bright Galaxy Sample and correct to $L_{mathrm{FIR},,b}$ using PACS images to match the varying FTS beam sizes. All 9 correlations between $L_{mathrm{CO}}$ and $L_{mathrm{FIR},,b}$ are essentially linear and tight ($sigma$=0.2-0.3 dex dispersion), even for the highest transition, $J=12-11$. This supports the notion that the star formation rate (SFR) is linearly correlated with the dense molecular gas ($n_{mathrm{H}_2}gtrsim10^{4-6},cm^{-3}$). We divide the entire sample into three subsamples and find that smaller sample sizes can induce large differences in the correlation slopes. We also derive an average CO spectral line energy distribution (SLED) for the entire sample and discuss the implied average molecular gas properties for these local galaxies. We further extend our sample to high-{it{z}} galaxies with CO $J=5-4$ data from the literature as an example, including submillimeter galaxies (SMGs) and normal star-forming BzKs. BzKs have similar FIR/CO(5-4) ratios as that of local galaxies, an follow well the locally-determined correlation, whereas SMG ratios fall around or slightly above the local correlation with large uncertainties. Finally, by including Galactic CO($J=10-9$) data as well as very limited high-{it{z}} CO $J=10-9$ data, we verify that the CO(10-9) -- FIR correlation successfully extends to Galactic young stellar objects, suggesting that linear correlations are valid over 15 orders of magnitude.
We present the results of CO(J=3-2) on-the-fly mappings of two nearby non-barred spiral galaxies NGC 628 and NGC 7793 with the Atacama Submillimeter Telescope Experiment at an effective angular resolution of 25. We successfully obtained global distri butions of CO(J=3-2) emission over the entire disks at a sub-kpc resolution for both galaxies. We examined the spatially-resolved (sub-kpc) relationship between CO(J=3-2) luminosities (LCO(3-2)) and infrared (IR) luminosities (LIR) for NGC 628, NGC 7793, and M 83, and compared it with global luminosities of JCMT Nearby Galaxy Legacy Survey sample. We found a striking linear LCO(3-2)-LIR correlation over the 4 orders of magnitude, and the correlation is consistent even with that for ultraluminous infrared galaxies and submillimeter selected galaxies. In addition, we examined the spatially-resolved relationship between CO(J=3-2) intensities (ICO(3-2)) and extinction-corrected star formation rates (SFRs) for NGC 628, NGC 7793, and M 83, and compared it with that for GMCs in M 33 and 14 nearby galaxy centers. We found a linear ICO(3-2)-SFR correlation with 1 dex scatter. We conclude that the CO(J=3-2) star formation law (i.e., linear LCO(3-2)-LIR and ICO(3-2)-SFR correlations) is universally applicable to various types and spatial scales of galaxies, from spatially-resolved nearby galaxy disks to distant IR-luminous galaxies, within 1 dex scatter.
88 - P. Fibla , S. Bovino , R. Riaz 2018
We present here a three-dimesional hydrodynamical simulation for star formation. Our aim is to explore the effect of the metal-line cooling on the thermodynamics of the star-formation process. We explore the effect of changing the metallicty of the g as from $Z/Z_{odot}=10^{-4}$ to $Z/Z_{odot}=10^{-2}$. Furthermore, we explore the implications of using the observational abundance pattern of a CEMP-no star, which have been considered to be the missing second-generation stars, the so-called Pop. III.2 stars. In order to pursue our aim, we modelled the microphysics by employing the public astrochemistry package KROME, using a chemical network which includes sixteen chemical species (H, H$^{+}$, H$^{-}$, He, He$^{+}$, He$^{++}$, e$^{-}$, H$_{2}$, H$_{2}^{+}$, C, C$^{+}$, O, O$^{+}$, Si, Si$^{+}$, and Si$^{++}$). We couple KROME with the fully three-dimensional Smoothed-particle hydrodynamics (SPH) code GRADSPH. With this framework we investigate the collapse of a metal-enhanced cloud, exploring the fragmentation process and the formation of stars. We found that the metallicity has a clear impact on the thermodynamics of the collapse, allowing the cloud to reach the CMB temperature floor for a metallicity $Z/Z_{odot}=10^{-2}$, which is in agreement with previous work. Moreover, we found that adopting the abundance pattern given by the star SMSS J031300.36-670839.3 the thermodynamics behavior is very similar to simulations with a metallicity of $Z/Z_{odot}=10^{-2}$, due to the high carbon abundance. As long as only metal line cooling is considered, our results support the metallicity threshold proposed by previous works, which will very likely regulate the first episode of fragmentation and potentially determine the masses of the resulting star clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا