ﻻ يوجد ملخص باللغة العربية
The electronic and magnetic properties of the graphene/Eu/Ni(111) intercalation-like system are studied in the framework of the GGA+U approach with dispersive interactions taken into account. Intercalation of monoatomic Eu layer underneath graphene on Ni(111) leads to the drastic changes of the electronic structure of graphene compared to free-standing graphene as well as graphene/Ni(111). The strong influence of the spin-polarised Eu 4f states, crossing the graphene-derived $pi$ states, on magnetic properties of graphene and on spin-filtering properties of the graphene/Eu/Ni(111) trilayer is discussed.
Experimental and theoretical studies of manganese deposition on graphene/Ni(111) shows that a thin ferromagnetic Ni3Mn layer, which is protected by the graphene overlayer, is formed upon Mn intercalation. The electronic bands of graphene are affected
We have performed electron energy-loss spectroscopy (EELS) studies of Ni(111), graphene/Ni(111), and the graphene/Au/Ni(111) intercalation-like system at different primary electron energies. A reduced parabolic dispersion of the pi plasmon excitation
We present a detailed theoretical investigation on the magnetic properties of small single-layered Fe, Co and Ni clusters deposited on Ir(111), Pt(111) and Au(111). For this a fully relativistic {em ab-initio} scheme based on density functional theor
We have investigated the magnetism of the bare and graphene-covered (111) surface of a Ni single crystal employing three different magnetic imaging techniques and ab initio calculations, covering length scales from the nanometer regime up to several
Hexagonal boron nitride (h-BN) is a promising material for implementation in spintronics due to a large band gap, low spin-orbit coupling, and a small lattice mismatch to graphene and to close-packed surfaces of fcc-Ni(111) and hcp-Co(0001). Epitaxia