ﻻ يوجد ملخص باللغة العربية
MICADO is a near-IR camera for the Europea ELT, featuring an extended field (75 diameter) for imaging, and also spectrographic and high contrast imaging capabilities. It has been chosen by ESO as one of the two first-light instruments. Although it is ultimately aimed at being fed by the MCAO module called MAORY, MICADO will come with an internal SCAO system that will be complementary to it and will deliver a high performance on axis correction, suitable for coronagraphic and pupil masking applications. The basis of the pupil masking approach is to ensure the stability of the optical transfer function, even in the case of residual errors after AO correction (due to non common path errors and quasi-static aberrations). Preliminary designs of pupil masks are presented. Trade-offs and technical choices, especially regarding redundancy and pupil tracking, are explained.
In this paper we present the first on-sky results with the fibered aperture masking instrument FIRST. Its principle relies on the combination of spatial filtering and aperture masking using single-mode fibers, a novel technique that is aimed at high
In this paper we explore the possibility of using transition edge sensor (TES) detectors in multi-mode configuration in the focal plane of the Short Wavelength Instrument for the Polarization Explorer (SWIPE) of the balloon-borne polarimeter Large Sc
While the importance of dusty asymptotic giant branch (AGB) stars to galactic chemical enrichment is widely recognised, a sophisticated understanding of the dust formation and wind-driving mechanisms has proven elusive due in part to the difficulty i
MICADO will equip the E-ELT with a first light capability for diffraction limited imaging at near-infrared wavelengths. The instruments observing modes focus on various flavours of imaging, including astrometric, high contrast, and time resolved. The
We describe the cryogenic half-wave plate rotation mechanisms built for and used in Spider, a polarization-sensitive balloon-borne telescope array that observed the Cosmic Microwave Background at 95 GHz and 150 GHz during a stratospheric balloon flig