ترغب بنشر مسار تعليمي؟ اضغط هنا

Nearly Linear-Work Algorithms for Mixed Packing/Covering and Facility-Location Linear Programs

208   0   0.0 ( 0 )
 نشر من قبل Neal E. Young
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Neal E. Young




اسأل ChatGPT حول البحث

We describe the first nearly linear-time approximation algorithms for explicitly given mixed packing/covering linear programs, and for (non-metric) fractional facility location. We also describe the first parallel algorithms requiring only near-linear total work and finishing in polylog time. The algorithms compute $(1+epsilon)$-approximate solutions in time (and work) $O^*(N/epsilon^2)$, where $N$ is the number of non-zeros in the constraint matrix. For facility location, $N$ is the number of eligible client/facility pairs.



قيم البحث

اقرأ أيضاً

We give an approximation algorithm for packing and covering linear programs (linear programs with non-negative coefficients). Given a constraint matrix with n non-zeros, r rows, and c columns, the algorithm computes feasible primal and dual solutions whose costs are within a factor of 1+eps of the optimal cost in time O((r+c)log(n)/eps^2 + n).
In this paper we provide an $tilde{O}(nd+d^{3})$ time randomized algorithm for solving linear programs with $d$ variables and $n$ constraints with high probability. To obtain this result we provide a robust, primal-dual $tilde{O}(sqrt{d})$-iteration interior point method inspired by the methods of Lee and Sidford (2014, 2019) and show how to efficiently implement this method using new data-structures based on heavy-hitters, the Johnson-Lindenstrauss lemma, and inverse maintenance. Interestingly, we obtain this running time without using fast matrix multiplication and consequently, barring a major advance in linear system solving, our running time is near optimal for solving dense linear programs among algorithms that do not use fast matrix multiplication.
This paper gives poly-logarithmic-round, distributed D-approximation algorithms for covering problems with submodular cost and monotone covering constraints (Submodular-cost Covering). The approximation ratio D is the maximum number of variables in a ny constraint. Special cases include Covering Mixed Integer Linear Programs (CMIP), and Weighted Vertex Cover (with D=2). Via duality, the paper also gives poly-logarithmic-round, distributed D-approximation algorithms for Fractional Packing linear programs (where D is the maximum number of constraints in which any variable occurs), and for Max Weighted c-Matching in hypergraphs (where D is the maximum size of any of the hyperedges; for graphs D=2). The paper also gives parallel (RNC) 2-approximation algorithms for CMIP with two variables per constraint and Weighted Vertex Cover. The algorithms are randomized. All of the approximation ratios exactly match those of comparable centralized algorithms.
We show algorithms for computing representative families for matroid intersections and use them in fixed-parameter algorithms for set packing, set covering, and facility location problems with multiple matroid constraints. We complement our tractability results by hardness results.
Motivated by applications in machine learning, such as subset selection and data summarization, we consider the problem of maximizing a monotone submodular function subject to mixed packing and covering constraints. We present a tight approximation a lgorithm that for any constant $epsilon >0$ achieves a guarantee of $1-frac{1}{mathrm{e}}-epsilon$ while violating only the covering constraints by a multiplicative factor of $1-epsilon$. Our algorithm is based on a novel enumeration method, which unlike previous known enumeration techniques, can handle both packing and covering constraints. We extend the above main result by additionally handling a matroid independence constraints as well as finding (approximate) pareto set optimal solutions when multiple submodular objectives are present. Finally, we propose a novel and purely combinatorial dynamic programming approach that can be applied to several special cases of the problem yielding not only {em deterministic} but also considerably faster algorithms. For example, for the well studied special case of only packing constraints (Kulik {em et. al.} [Math. Oper. Res. `13] and Chekuri {em et. al.} [FOCS `10]), we are able to present the first deterministic non-trivial approximation algorithm. We believe our new combinatorial approach might be of independent interest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا