ترغب بنشر مسار تعليمي؟ اضغط هنا

Tests on NaI(Tl) crystals for WIMP search at the Yangyang Underground Laboratory

101   0   0.0 ( 0 )
 نشر من قبل Hyun Su Lee
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Among the direct search experiments for WIMP dark matter, the DAMA experiment observed an annual modulation signal interpreted as WIMP interactions with 9.2$sigma$ significance. However, this result is contradictory with other direct search experiments reporting null signals in the same parameter space allowed by the DAMA observation, necessitating clarification of the origin of the modulation signal observed using the NaI(Tl) crystals of the DAMA experiment independently. Here, we report the first results of NaI(Tl) crystal measurement at the Yangyang Underground Laboratory to grow ultra-low-background NaI(Tl) crystal detectors.



قيم البحث

اقرأ أيضاً

We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton scattered 662 keV $gamma$-rays from a $^{13 7}$Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate the sensitivity to the interaction rate for weakly interacting massive particles (WIMPs) with nucleons, and the result is compared with the annual modulation amplitude observed by the DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon interactions based on 100 kg$cdot$year of data from NaI detectors is estimated with simulated experiments, using the standard halo model.
201 - W. Zhao , Q. Yue , K.J. Kang 2013
The China Dark matter Experiment collaboration reports the first experimental limit on WIMP dark matter from 14.6 kg-day of data taken with a 994 g p-type point-contact germanium detector at the China Jinping underground Laboratory where the rock ove rburden is more than 2400 m. The energy threshold achieved was 400 eVee. According to the 14.6 kg-day live data, we placed the limit of N= 1.75 * 10^{-40} cm^{2} at 90% confidence level on the spin-independent cross-section at WIMP mass of 7 GeV before differentiating bulk signals from the surface backgrounds.
The COSINE-100 dark matter search experiment is an array of NaI(Tl) crystal detectors located in the Yangyang Underground Laboratory (Y2L). To understand measured backgrounds in the NaI(Tl) crystals we have performed Monte Carlo simulations using the Geant4 toolkit and developed background models for each crystal that consider contributions from both internal and external sources, including cosmogenic nuclides. The background models are based on comparisons of measurement data with Monte Carlo simulations that are guided by a campaign of material assays and are used to evaluate backgrounds and identify their sources. The average background level for the six crystals (70 kg total mass) that are studied is 3.5 counts/day/keV/kg in the (2-6) keV energy interval. The dominant contributors in this energy region are found to be $^{210}$Pb and $^3$H.
59 - Young Soo Yoon , Jungho Kim , 2021
Several experiments have been conducted in the YangYang Underground Laboratory in the Republic of Korea such as the search for dark matter and the search for neutrinoless double-beta decay, which require an extremely low background event rate due to the detector system and the environment. In underground experiments, neutrons have been identified as one of the background sources. The neutron flux in the experimental site needs to be determined to design a proper shielding system and for precise background estimation. We measured the neutron spectrum with a Bonner sphere spectrometer, with Helium-3 ($^{3}$He) proportional counters. The neutron flux at the underground laboratory was so low that the radioactive decays from the radioisotopes contained in the detector created a significant background interference to the neutron measurement. Using Monte Carlo simulations, the intrinsic $alpha$ background distribution due to the radioactive isotopes in the detector materials, was estimated. The neutron count rate of each Bonner sphere was measured from the pulse height spectrum of the $^{3}$He proportional counter, after subtracting the $alpha$ particle background. The neutron flux and the energy spectrum were determined using the unfolding technique. The total neutron flux measured was (4.46 $pm$ 0.66) $times$ $10^{-5}$ $rm{cm^{-2} s^{-1}}$, and the thermal and fast neutron flux (in the range 1 to 10 MeV) were (1.44 $pm$ 0.15) $times$ 10$^{-5}$ $rm{cm^{-2} s^{-1}}$ and (0.71 $pm$ 0.10) $times$ 10$^{-5}$ $rm{cm^{-2} s^{-1}}$, respectively.
A high purity and large volume NaI(Tl) scintillator was developed to search for cosmic dark matter. The required densities of radioactive impurities (RIs) such as U-chain, Th-chain are less than a few ppt to establish high sensitivity to dark matter. The impurity of RIs were effectively reduced by selecting raw materials of crucible and by performing chemical reduction of lead ion in NaI raw powder. The impurity of $^{226}$Ra was reduced less than 100 $mu$Bq/kg in NaI(Tl) crystal. It should be remarked that the impurity of $^{210}$Pb, which is difficult to reduce, is effectively reduced by chemical processing of NaI raw powder down to less than 30 $mu$Bq/kg. The expected sensitivity to cosmic dark matter by using 250 kg of the high purity and large volume NaI(Tl) scintillator (PICO-LON; Pure Inorganic Crystal Observatory for LOw-background Neutr(al)ino) is 7$times$10$^{-45}$ cm$^{2}$ for 50 GeV$/c^{2}$ WIMPs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا