ترغب بنشر مسار تعليمي؟ اضغط هنا

Deformation Dependence of Breathing Oscillations in Bose - Fermi Mixtures at Zero Temperature

102   0   0.0 ( 0 )
 نشر من قبل Tomoyuki Maruyama
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the breathing oscillations in bose-fermi mixtures in the axially-symmetric deformed trap of prolate, spherical and oblate shapes, and clarify the deformation dependence of the frequencies and the characteristics of collective oscillations. The collective oscillations of the mixtures in deformed traps are calculated in the scaling method. In largely-deformed prolate and oblate limits and spherical limit, we obtain the analytical expressions of the collective frequencies. The full calculation shows that the collective oscillations become consistent with the analytically-obtained frequencies when the system is deformed into both prolate and oblate regions. The complicated changes of oscillation characters are shown to occur in the transcendental regions around the spherically-deformed region. We find that these critical changes of oscillation characters are explained by the level crossing behaviors of the intrinsic oscillation modes. The approximate expressions are obtained for the level crossing points that determine the transcendental regions. We also compare the results of the scaling methods with those of the dynamical approach.



قيم البحث

اقرأ أيضاً

We use kinetic theory to model the dynamics of a small Bose condensed cloud of heavy particles moving through a larger degenerate Fermi gas of light particles. Varying the Bose-Fermi interaction, we find a crossover between bulk and surface dominated regimes -- where scattering occurs throughout the Bose cloud, or solely on the surface. We calculate the damping and frequency shift of the dipole mode in a harmonic trap as a function of the magnetic field controlling an inter-species Feshbach resonance. We find excellent agreement between our stochastic model and the experimental studies of Cs-Li mixtures.
We investigate collective excitations of density fluctuations and a dynamic density structure factor in a mixture of Bose and Fermi gases in a normal phase. With decreasing temperature, we find that the frequency of the collective excitation deviates from that of the hydrodynamic sound mode. Even at temperature much lower than the Fermi temperature, the collective mode frequency does not reach the collisionless limit analogous to zero sound in a Fermi gas, because of collisions between bosons and fermions.
Motivated by a recent experiment [J. Catani et al., arXiv:1106.0828v1 preprint, 2011], we study breathing oscillations in the width of a harmonically trapped impurity interacting with a separately trapped Bose gas. We provide an intuitive physical pi cture of such dynamics at zero temperature, using a time-dependent variational approach. In the Gross-Pitaevskii regime we obtain breathing oscillations whose amplitudes are suppressed by self trapping, due to interactions with the Bose gas. Introducing phonons in the Bose gas leads to the damping of breathing oscillations and non-Markovian dynamics of the width of the impurity, the degree of which can be engineered through controllable parameters. Our results reproduce the main features of the impurity dynamics observed by Catani et al. despite experimental thermal effects, and are supported by simulations of the system in the Gross-Pitaevskii regime. Moreover, we predict novel effects at lower temperatures due to self-trapping and the inhomogeneity of the trapped Bose gas.
We consider a Bose-Fermi mixture in the molecular limit of the attractive interaction between fermions and bosons. For a boson density smaller or equal to the fermion density, we show analytically how a T-matrix approach for the constituent bosons an d fermions recovers the expected physical limit of a Fermi-Fermi mixture of molecules and atoms. In this limit, we derive simple expressions for the self-energies, the momentum distribution function, and the chemical potentials. By extending these equations to a trapped system, we determine how to tailor the experimental parameters of a Bose-Fermi mixture in order to enhance the indirect Pauli exclusion effect on the boson momentum distribution function. For the homogeneous system, we present finally a Diffusion Monte Carlo simulation which confirms the occurrence of such a peculiar effect.
We study thermal properties of a trapped Bose-Bose mixture in a dilute regime using quantum Monte Carlo methods. Our main aim is to investigate the dependence of the superfluid density and the condensate fraction on temperature, for the mixed and sep arated phases. To this end, we use the diffusion Monte Carlo method, in the zero-temperature limit, and the path-integral Monte Carlo method for finite temperatures. The results obtained are compared with solutions of the coupled Gross-Pitaevskii equations for the mixture at zero temperature. We notice the existence of an anisotropic superfluid density in some phase-separated mixtures. Our results also show that the temperature evolution of the superfluid density and condensate fraction is slightly different, showing noteworthy situations where the superfluid fraction is smaller than the condensate fraction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا