ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical conductivity of V4O7 across its metal-insulator transition

134   0   0.0 ( 0 )
 نشر من قبل Irene Lo Vecchio
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The optical properties of a V4O7 single crystal have been investigated from the high temperature metallic phase down to the low temperature antiferromagnetic insulating one. The temperature dependent behavior of the optical conductivity across the metal-insulator transition (MIT) can be explained in a polaronic scenario. Charge carriers form strongly localized polarons in the insulating phase as suggested by a far-infrared charge gap abruptly opening at T_MIT = 237 K. In the metallic phase instead the presence of a Drude term is indicative of fairly delocalized charges with a moderately renormalized mass m* = 5m_e. The electronic spectral weight is almost recovered on an energy scale of 1 eV, which is much narrower compared to VO2 and V2O3 cases. Those findings suggest that electron-lattice interaction rather than electronic correlation is the driving force for V4O7 metal-insulator transition.



قيم البحث

اقرأ أيضاً

The celebrated Wiedemann-Franz (WF) law is believed to be robust in metals as long as interactions between electrons preserve their fermion-quasiparticle character. We study thermal transport and the fate of the WF law close to a continuous metal-ins ulator transition (MIT) in the Falicov-Kimball model (FKM) using cluster-dynamical mean-field theory (CDMFT). Surprisingly, as for electrical transport, we find robust and novel quantum critical scaling in thermal transport across the MIT. We unearth the deeper reasons for these novel findings in terms of (i) the specific structure of energy-current correlations for the FKM and (ii) the microscopic electronic processes which facil- itate energy transport while simultaneously blocking charge transport close to the MIT. However, within (C)DMFT, we also find that the WF law survives at T=0 in the incoherent metal right up to the MIT, even in absence of Landau quasiparticles.
57 - A. Rusydi , R. Rauer , G. Neuber 2007
The electronic response of doped manganites at the transition from the paramagnetic insulating to the ferromagnetic metallic state in $rm La_{1-x}Ca_{x}MnO_3$ for $rm (x=0.3,0.2)$ was investigated by dc conductivity, ellipsometry, and VUV reflectance for energies between 0 and 24 eV. A stablized Kramers-Kronig transformation yields the optical conductivity and reveals changes in the optical spectral weight up to 24 eV at the metal to insulator transition. In the observed energy range, the spectral weight is conserved within $rm 0.3 %$. The redistribution of spectral weight between low and high energies has important ramifications for the down-folding of low-energy Hamiltonians. We discuss the importance of the charge-transfer, Coulomb onsite, Jahn-Teller, and screening effects to the electronic structure.
A wide range of disordered materials, including disordered correlated systems, show Universal Dielectric Response (UDR), followed by a superlinear power-law increase in their optical responses over exceptionally broad frequency regimes. While extensi vely used in various contexts over the years, the microscopics underpinning UDR remains controversial. Here, we investigate the optical response of the simplest model of correlated fermions, Falicov-Kimball model (FKM), across the continuous metal-insulator transition (MIT) and analyze the associated quantum criticality in detail using cluster extension of dynamical mean field theory (CDMFT). Surprisingly, we find that UDR naturally emerges in the quantum critical region associated with the continuous MIT. We tie the emergence of these novel features to a many-body orthogonality catastrophe accompanying the onset of strongly correlated electronic glassy dynamics close to the MIT, providing a microscopic realization of Jonschers time-honored proposal as well as a rationale for similarities in optical responses between correlated electronic matter and canonical glass formers.
Aging effects in the relaxations of conductivity of a two-dimensional electron system in Si have been studied as a function of carrier density. They reveal an abrupt change in the nature of the glassy phase at the metal-insulator transition (MIT): (a ) while full aging is observed in the insulating regime, there are significant departures from full aging on the metallic side of the MIT, before the glassy phase disappears completely at a higher density $n_g$; (b) the amplitude of the relaxations peaks just below the MIT, and it is strongly suppressed in the insulating phase. Other aspects of aging, including large non-Gaussian noise and similarities to spin glasses, also have been discussed.
The hyperkagome antiferromagnet Na$_{4}$Ir$_3$O$_8$ represents the first genuine candidate for the realisation of a three-dimensional quantum spin-liquid. It can also be doped towards a metallic state, thus offering a rare opportunity to explore the nature of the metal-insulator transition in correlated, frustrated magnets. Here we report thermodynamic and transport measurements in both metallic and weakly insulating single crystals down to 150 mK. While in the metallic sample the phonon thermal conductivity ($kappa^{ph}$) is almost in the boundary scattering regime, in the insulating sample we find a large reduction $kappa^{ph}$ over a very wide temperature range. This result can be ascribed to the scattering of phonons off nanoscale disorder or off the gapless magnetic excitations that are seen in the low-temperature specific heat. This works highlights the peculiarity of the metal-insulator transition in Na$_{3+x}$Ir$_3$O$_8$ and demonstrates the importance of the coupling between lattice and spin degrees of freedom in the presence of strong spin-orbit coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا