ترغب بنشر مسار تعليمي؟ اضغط هنا

MOSFIRE and LDSS3 Spectroscopy for an [OII] Blob at z=1.18: Gas Outflow and Energy Source

34   0   0.0 ( 0 )
 نشر من قبل Yuichi Harikane
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report our Keck/MOSFIRE and Magellan/LDSS3 spectroscopy for an [OII] Blob, OIIB10, that is a high-$z$ galaxy with spatially extended [OII]$lambdalambda3726,3729$ emission over 30 kpc recently identified by a Subaru large-area narrowband survey. The systemic redshift of OIIB10 is $z=1.18$ securely determined with [OIII]$lambdalambda4959,5007$ and H$beta$ emission lines. We identify FeII$lambda$2587 and MgII$lambdalambda$2796,2804 absorption lines blueshifted from the systemic redshift by $80pm50$ and $260pm40$ km s$^{-1}$, respectively, which indicate gas outflow from OIIB10 with the velocity of $sim 80-260$ km s$^{-1}$. This outflow velocity is comparable with the escape velocity, $250pm140$ km s$^{-1}$, estimated under the assumption of a singular isothermal halo potential profile. Some fraction of the outflowing gas could escape from the halo of OIIB10, suppressing OIIB10s star-formation activity. We estimate a mass loading factor, $eta$, that is a ratio of mass outflow rate to star-formation rate, and obtain $eta>0.8pm 0.1$ which is relatively high compared with low-$z$ starbursts including U/LIRGs and AGNs. The major energy source of the outflow is unclear with the available data. Although no signature of AGN is found in the X-ray data, OIIB10 falls in the AGN/star-forming composite region in the line diagnostic diagrams. It is possible that the outflow is powered by star formation and a type-2 AGN with narrow FWHM emission line widths of $70-130$ km s$^{-1}$. This is the first detailed spectroscopic study of oxygen-line blobs, which includes the analyses of the escape velocity, the mass loading factor, and the presence of an AGN, and a significant step to understanding the nature of oxygen-line blobs and the relation with gas outflow and star-formation quenching at high redshift.

قيم البحث

اقرأ أيضاً

We present IRAM PdBI observations of the CO(3-2) and CO(5-4) line transitions from a Ly-alpha blob at z~2.7 in order to investigate the gas kinematics, determine the location of the dominant energy source, and study the physical conditions of the mol ecular gas. CO line and dust continuum emission are detected at the location of a strong MIPS source that is offset by ~1.5 from the Ly-alpha peak. Neither of these emission components is resolved with the 1.7 beam, showing that the gas and dust are confined to within ~7kpc from this galaxy. No millimeter source is found at the location of the Ly-alpha peak, ruling out a central compact source of star formation as the power source for the Ly-alpha emission. Combined with a spatially-resolved spectrum of Ly-alpha and HeII, we constrain the kinematics of the extended gas using the CO emission as a tracer of the systemic redshift. Near the MIPS source, the Ly-alpha profile is symmetric and its line center agrees with that of CO line, implying that there are no significant bulk flows and that the photo-ionization from the MIPS source might be the dominant source of the Ly-alpha emission. In the region near the Ly-alpha peak, the gas is slowly receding (~100km/s) with respect to the MIPS source, thus making the hyper-/superwind hypothesis unlikely. We find a sub-thermal line ratio between two CO transitions, I_CO(5-4)/I_CO(3-2)=0.97+/-0.21. This line ratio is lower than the average values found in high-z SMGs and QSOs, but consistent with the value found in the Galactic center, suggesting that there is a large reservoir of low-density molecular gas that is spread over the MIPS source and its vicinity.
We present spectroscopic measurements of the [OIII] emission line from two subregions of strong Lyman-alpha emission in a radio-quiet Lyman-alpha blob (LAB). The blob under study is LAB1 (Steidel et al. 2000) at z ~ 3.1, and the [OIII] detections are from the two Lyman break galaxies embedded in the blob halo. The [OIII] measurements were made with LUCIFER on the 8.4m Large Binocular Telescope and NIRSPEC on 10m Keck Telescope. Comparing the redshift of the [OIII] measurements to Lyman-alpha redshifts from SAURON (Weijmans et al. 2010) allows us to take a step towards understanding the kinematics of the gas in the blob. Using both LUCIFER and NIRSPEC we find velocity offsets between the [OIII] and Lyman-alpha redshifts that are modestly negative or consistent with 0 km/s in both subregions studied (ranging from -72 +/- 42 -- +6 +/- 33 km/s). A negative offset means Lyman-alpha is blueshifted with respect to [OIII], a positive offset then implies Lyman-alpha is redshifted with respect to [OIII]. These results may imply that outflows are not primarily responsible for Lyman alpha escape in this LAB, since outflows are generally expected to produce a positive velocity offset (McLinden et al. 2011). In addition, we present an [OIII] line flux upper limit on a third region of LAB1, a region that is unassociated with any underlying galaxy. We find that the [OIII] upper limit from the galaxy-unassociated region of the blob is at least 1.4 -- 2.5 times fainter than the [OIII] flux from one of the LBG-associated regions and has an [OIII] to Lyman-alpha ratio measured at least 1.9 -- 3.4 times smaller than the same ratio measured from one of the LBGs.
We measure and quantify properties of galactic outflows and diffuse gas at $z geq 1$ in cosmological hydrodynamical simulations. Our novel sub-resolution model, MUPPI, implements supernova feedback using fully local gas properties, where the wind vel ocity and mass loading are not given as input. We find the following trends at $z = 2$ by analysing central galaxies having a stellar mass higher than $10^{9} M_{odot}$. The outflow velocity and mass outflow rate ($dot{M}_{rm out}$) exhibit positive correlations with galaxy mass and with the star formation rate (SFR). However, most of the relations present a large scatter. The outflow mass loading factor ($eta$) is between $0.2 - 10$. The comparison Effective model generates a constant outflow velocity, and a negative correlation of $eta$ with halo mass. The number fraction of galaxies where outflow is detected decreases at lower redshifts, but remains more than $80 %$ over $z = 1 - 5$. High SF activity at $z sim 2 - 4$ drives strong outflows, causing the positive and steep correlations of velocity and $dot{M}_{rm out}$ with SFR. The outflow velocity correlation with SFR becomes flatter at $z = 1$, and $eta$ displays a negative correlation with halo mass in massive galaxies. Our study demonstrates that both the MUPPI and Effective models produce significant outflows at $sim 1 / 10$ of the virial radius; at the same time shows that the properties of outflows generated can be different from the input speed and mass loading in the Effective model. Our MUPPI model, using local properties of gas in the sub-resolution recipe, is able to develop galactic outflows whose properties correlate with global galaxy properties, and consistent with observations.
Nuclear outflows driven by accreting massive black holes are one of the main feedback mechanisms invoked at high-z to reproduce the distinct separation between star-forming, disk galaxies and quiescent spheroidal systems. Yet, our knowledge of feedba ck at high-z remains limited by the lack of observations of the multiple gas phases in galaxy outflows. In this work we use new deep, high-spatial resolution ALMA CO(3-2) and archival VLT/SINFONI H$alpha$ observations to study the molecular and ionized components of the AGN-driven outflow in zC400528 ---a massive, main sequence galaxy at z=2.3 in the process of quenching. We detect a powerful molecular outflow that shows a positive velocity gradient and extends for at least ~10 kpc from the nuclear region, about three times the projected size of the ionized wind. The molecular gas in the outflow does not reach velocities high enough to escape the galaxy and is therefore expected to be reaccreted. Keeping in mind the various assumptions involved in the analysis, we find that the mass and energetics of the outflow are dominated by the molecular phase. The AGN-driven outflow in zC400528 is powerful enough to deplete the molecular gas reservoir on a timescale at least twice shorter than that needed to exhaust it by star formation. This suggests that the nuclear outflow is one of the main quenching engines at work in the observed suppression of the central star-formation activity in zC400528.
In this paper we present the MOSFIRE Deep Evolution Field (MOSDEF) survey. The MOSDEF survey aims to obtain moderate-resolution (R=3000-3650) rest-frame optical spectra (~3700-7000 Angstrom) for ~1500 galaxies at 1.37<z<3.80 in three well-studied CAN DELS fields: AEGIS, COSMOS, and GOODS-N. Targets are selected in three redshift intervals: 1.37<z<1.70, 2.09<z<2.61, and 2.95<z<3.80, down to fixed H_AB (F160W) magnitudes of 24.0, 24.5 and 25.0, respectively, using the photometric and spectroscopic catalogs from the 3D-HST survey. We target both strong nebular emission lines (e.g., [OII], Hbeta, [OIII], 5008, Halpha, [NII], and [SII]) and stellar continuum and absorption features (e.g., Balmer lines, Ca-II H and K, Mgb, 4000 Angstrom break). Here we present an overview of our survey, the observational strategy, the data reduction and analysis, and the sample characteristics based on spectra obtained during the first 24 nights. To date, we have completed 21 masks, obtaining spectra for 591 galaxies. For ~80% of the targets we derive a robust redshift from either emission or absorption lines. In addition, we confirm 55 additional galaxies, which were serendipitously detected. The MOSDEF galaxy sample includes unobscured star-forming, dusty star-forming, and quiescent galaxies and spans a wide range in stellar mass (~10^9-10^11.5 Msol) and star formation rate (~10^0-10^3 Msol/yr). The spectroscopically confirmed sample is roughly representative of an H-band limited galaxy sample at these redshifts. With its large sample size, broad diversity in galaxy properties, and wealth of available ancillary data, MOSDEF will transform our understanding of the stellar, gaseous, metal, dust, and black hole content of galaxies during the time when the universe was most active.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا