ترغب بنشر مسار تعليمي؟ اضغط هنا

Demonstration of new possibilities of multilayer technology on resistive microstrip/ microdot detectors

244   0   0.0 ( 0 )
 نشر من قبل Vladimir Peskov
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The first successful attempts to optimize the electric field in Resistive Microstrip Gas Chamber and resistive microdot detectors using additional field shaping strips located inside the detector substrate are described

قيم البحث

اقرأ أيضاً

In the last few years our group have focused on developing various designs of spark-protected micropattern gaseous detectors featuring resistive electrodes instead of the traditional metallic ones: resistive microstrip counters, resistive GEM, resist ive MICROMEGAS. These detectors combine in one design the best features of RPCs (spark-protection) and micropattern detectors (a high position resolution). In this paper we report the progress so far made in developing other types of resistive micropattern detectors: a microdot-microhole detector and a microgap-microstrip detector. The former detector is an optimal electron amplifier for some special designs of dual phase noble liquid TPCs, for example with a CsI photocathode immersed inside the noble liquid. Preliminary tests of such a detector, for the first time built and investigated, are reported in this paper. The latter detector is mainly orientated towards medical imaging applications such as X-ray scanners. However, we believe that after a proper gas optimization, these detectors could also achieve a high time resolution and could thus be used in applications as TOF-PET, detection of charged particles with simultaneous high time and position resolution etc.
A new family of spark-protected micropattern gaseous detectors is introduced: a 2-D sensitive restive microstrip counter and hybrid detectors, which combine in one design a resistive GEM with a microstrip detector. These novel detectors have several important advantages over other conventional micropattern detectors and are unique for applications like the readout detectors for dual phase noble liquid TPCs and RICHs.
Resistive-anode Micromegas detectors are in development since several years, in an effort to solve the problem of sparks when working in high flux and high radiations environment like in the HL-LHC (ten times the luminosity of the LHC). They have bee n chosen as one of the technologies that will be part of the ATLAS New Small Wheel project (forward muon system). An ageing study is mandatory to assess their capabilities to handle the HL-LHC environment on a long-term period. A prototype has been exposed to several types of irradiations (X-rays, cold neutrons, 60 Co gammas) up to an equivalent HL-LHC time of more than five years without showing any degradation of the performances in terms of gain and energy resolution. Beam test studies took place in October 2012 to assess the tracking performances (efficiency, spatial resolution,...). Results of ageing studies and beam test performances are reported in this paper.
While the tracking detectors of the ATLAS and CMS experiments have shown excellent performance in Run 1 of LHC data taking, and are expected to continue to do so during LHC operation at design luminosity, both experiments will have to exchange their tracking systems when the LHC is upgraded to the high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems need to operate in an environment in which both the hit densities and the radiation damage will be about an order of magnitude higher than today. In addition, the new trackers need to contribute to the first level trigger in order to maintain a high data-taking efficiency for the interesting processes. Novel detector technologies have to be developed to meet these very challenging goals. The German groups active in the upgrades of the ATLAS and CMS tracking systems have formed a collaborative Project on Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC (PETTL), which was supported by the Helmholtz Alliance Physics at the Terascale during the years 2013 and 2014. The aim of the project was to share experience and to work together on key areas of mutual interest during the R&D phase of these upgrades. The project concentrated on five areas, namely exchange of experience, radiation hardness of silicon sensors, low mass system design, automated precision assembly procedures, and irradiations. This report summarizes the main achievements.
We designed, produced, and tested RSD (Resistive AC-Coupled Silicon Detectors) devices, an evolution of the standard LGAD (Low-Gain Avalanche Diode) technology where a resistive n-type implant and a coupling dielectric layer have been implemented. Th e first feature works as a resistive sheet, freezing the multiplied charges, while the second one acts as a capacitive coupling for readout pads. We succeeded in the challenging goal of obtaining very fine pitch (50, 100, and 200 um) while maintaining the signal waveforms suitable for high timing and 4D-tracking performances, as in the standard LGAD-based devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا