ﻻ يوجد ملخص باللغة العربية
We investigate the real-time dynamics of photoexcited electronic instabilities in a charge-transfer system model, using the time-dependent density matrix renormalization group method. The model of choice was the quarter-filled one-dimensional extended Peierls-Hubbard Hamiltonian interacting with classical few-cycle electromagnetic radiation. The results show that only one electronic instability drives the main features of the photogenerated time-dependent behavior. Indeed, the photoresponse of the system shows a large enhancement of the $4k_F$ (bond and charge) instability whereas the $2k_F$ state remains largely unaffected. This conclusion holds regardless of the nature of the optical excitations and whether the system is perturbed resonantly or not. Our results suggest potential applications of charge-transfer systems with slow phononic dynamics as optoelectronic switching devices.
We investigate the possible classification of zero-temperature spin-gapped phases of multicomponent electronic systems in one spatial dimension. At the heart of our analysis is the existence of non-perturbative duality symmetries which emerge within
Muon spin rotation and resonant soft X-ray scattering experiments on prototype multiferroics RMn2O5 (R = Y, Sm) are used to demonstrate that the local electric displacements are driven by the spin-current (SC) mechanism. Small local electric displace
We study the real-time and real-space dynamics of charge in the one-dimensional Hubbard model in the limit of high temperatures. To this end, we prepare pure initial states with sharply peaked density profiles and calculate the time evolution of thes
We revisit the problem of dynamical response in spin-charge separated one dimensional quantum fluids. In the framework of Luttinger liquid theory, the dynamical response is formulated in terms of noninteracting bosonic collective excitations carrying
We have thoroughly characterized the surfaces of the organic charge-transfer salts TTF-TCNQ and (TMTSF)2PF6 which are generally acknowledged as prototypical examples of one-dimensional conductors. In particular x-ray induced photoemission spectroscop