ﻻ يوجد ملخص باللغة العربية
EuTiO_3, which is a G-type antiferromagnet below T_N = 5.5 K, has some fascinating properties at high temperatures, suggesting that macroscopically hidden dynamically fluctuating weak magnetism exists at high temperatures. This conjecture is substantiated by magnetic field dependent magnetization measurements, which exhibit pronounced anomalies below 200 K becoming more distinctive with increasing magnetic field strength. Additional results from muon spin rotation (${mu}$SR) experiments provide evidence for weak fluctuating bulk magnetism induced by spin-lattice coupling which is strongly supported in increasing magnetic field.
Electron-phonon coupling, being one of the most important parameters governing the material evolution after ultrafast energy deposition, yet remains the most unexplored one. In this work, we applied the dynamical coupling approach to calculate the no
The discovery of an ever increasing family of atomic layered magnetic materials, together with the already established vast catalogue of strong spin-orbit coupling (SOC) and topological systems, calls for some guiding principles to tailor and optimiz
Structural as well as magnetization studies have been carried out on graphite samples irradiated by neutrons over 50 years in the CIRUS research reactor at Trombay. Neutron diffraction studies reveal that the defects in irradiated graphite samples ar
We have characterized the temperature dependence of the flux threading dc SQUIDs cooled to millikelvin temperatures. The flux increases as 1/T as temperature is lowered; moreover, the flux change is proportional to the density of trapped vortices. Th
High-temperature alloy design requires a concurrent consideration of multiple mechanisms at different length scales. We propose a workflow that couples highly relevant physics into machine learning (ML) to predict properties of complex high-temperatu