ترغب بنشر مسار تعليمي؟ اضغط هنا

The suppression of Curie temperature by Sr doping in diluted ferromagnetic semiconductor (La1-xSrx)(Zn1-yMny)AsO

83   0   0.0 ( 0 )
 نشر من قبل Fanlong Ning Prof.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(La1-xSrx)(Zn1-yMny)AsO is a two dimensional diluted ferromagnetic semiconductor that has the advantage of decoupled charge and spin doping. The substitution of Sr2+ for La3+ and Mn2+ for Zn2+ into the parent semiconductor LaZnAsO introduces hole carriers and spins, respectively. This advantage enables us to investigate the influence of carrier doping on the ferromagnetic ordered state through the control of Sr concentrations in (La1-xSrx)(Zn0.9Mn0.1)AsO. 10 % Sr doping results in a ferromagnetic ordering below TC ~ 30 K. Increasing Sr concentration up to 30 % heavily suppresses the Curie temperature and saturation moments. Neutron scattering measurements indicate that no structural transition occurs for (La0.9Sr0.1)(Zn0.9Mn0.1)AsO below 300 K.

قيم البحث

اقرأ أيضاً

We use muon spin relaxation (muSR) to investigate the magnetic properties of a bulk form diluted ferromagnetic semiconductor (DFS) Li1.15(Zn0.9Mn0.1)P with T_C ~ 22 K. MuSR results confirm the gradual development of ferromagnetic ordering below T_C w ith a nearly 100% magnetic ordered volume. Despite its low carrier density, the relation between static internal field and Curie temperature observed for Li(Zn,Mn)P is consistent with the trend found in (Ga,Mn)As and other bulk DFSs, indicating these systems share a common mechanism for the ferromagnetic exchange interaction. Li1+y(Zn1-xMnx)P has the advantage of decoupled carrier and spin doping, where Mn2+ substitution for Zn2+ introduces spins and Li+ off-stoichiometry provides carriers. This advantage enables us to investigate the influence of overdoped Li on the ferromagnetic ordered state. Overdoping Li suppresses both T_C and saturation moments for a certain amount of spins, which indicates that more carriers are detrimental to the ferromagnetic exchange interaction, and that a delicate balance between charge and spin densities is required to achieve highest T_C.
68 - Jicai Lu , Huiyuan Man , Cui Ding 2013
The doping effect of Sr and transition metals Mn, Fe, Co into the direct-gap semiconductor LaZnAsO has been investigated. Our results indicate that the single phase ZrCuSiAs-type tetragonal crystal structure is preserved in (La1-xSrx)(Zn1-xTMx)AsO (T M = Mn, Fe, Co) with the doping level up to x = 0.1. While the system remains semiconducting, doping with Sr and Mn results in ferromagnetic order with TC ~ 30K, and doping with Sr and Fe results in a spin glass like state below ~6K with a saturation moment of ~0.02 muB/Fe, an order of magnitude smaller than the ~0.4 muB/Mn of Sr and Mn doped samples. The same type of magnetic state is observed neither for (Zn,Fe) substitution without carrier doping, nor for Sr and Co doped specimens.
We report the synthesis and characterization of a bulk diluted magnetic semiconductor (La1-xBax)(Zn1-xMnx)AsO (0 <= x <= 0.2) with a layered crystal structure identical to that of the 1111 FeAs superconductors. No ferromagnetic order occurs for (Zn,M n) substitution in the parent compound LaZnAsO without charge doping. Together with carrier doping via (La,Ba) sub- stitution, a small amount of Mn substituting for Zn results in ferromagnetic order with TC up to ~40 K, although the system remains semiconducting. Muon spin relaxation measurements confirm the development of ferromagnetic order in the entire volume, with the relationship between the internal field and TC consistent with the trend found in (Ga,Mn)As, the 111 Li(Zn,Mn)As, and the 122 (Ba,K)(Zn,Mn)2As2 systems.
395 - Z. Deng , K. Zhao , B.Gu 2013
We report the discovery of a new diluted magnetic semiconductor, Li(Zn,Mn)P, in which charge and spin are introduced independently via lithium off-stoichiometry and the isovalent substitution of Mn2+ for Zn2+, respectively. Isostructural to (Ga,Mn)As , Li(Zn,Mn)P was found to be a p-type ferromagnetic semiconductor with excess Lithium providing charge doping. First principles calculations indicate that excess Li is favored to partially occupy the Zn site, leading to hole doping. Ferromagnetism is mediated in semiconducting samples of relative low mobile carriers with a small coercive force, indicating an easy spin flip.
152 - G. Herranz , R. Ranchal , M. Bibes 2005
We report on tunneling magnetoresistance (TMR) experiments that demonstrate the existence of a significant spin polarization in Co-doped (La,Sr)TiO3-d (Co-LSTO), a ferromagnetic diluted magnetic oxide system (DMOS) with high Curie temperature. These TMR experiments have been performed on magnetic tunnel junctions associating Co-LSTO and Co electrodes. Extensive structural analysis of Co-LSTO combining high-resolution transmission electron microscopy and Auger electron spectroscopy excluded the presence of Co clusters in the Co-LSTO layer and thus, the measured ferromagnetism and high spin polarization are intrinsic properties of this DMOS. Our results argue for the DMOS approach with complex oxide materials in spintronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا