ترغب بنشر مسار تعليمي؟ اضغط هنا

The asynchronous polar V1432 Aquilae and its path back to synchronism

174   0   0.0 ( 0 )
 نشر من قبل David Boyd
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

V1432 Aquilae is the only known eclipsing asynchronous polar. In this respect it is unique and therefore merits our attention. We report the results of a 15-year campaign by the globally distributed Center for Backyard Astrophysics to observe V1432 Aql and investigate its return to synchronism. Originally knocked out of synchrony by a nova explosion before observing records began, the magnetic white dwarf in V1432 Aql is currently rotating slower than the orbital period but is gradually catching up. The fortuitously high inclination of the binary orbit affords us the bonus of eclipses providing a regular clock against which these temporal changes can be assessed. At the present rate, synchronism should be achieved around 2100. The continually changing trajectory of the accretion stream as it follows the magnetic field lines of the rotating white dwarf produces a complex pattern of light emission which we have measured and documented, providing comprehensive observational evidence against which physical models of the system can be tested.

قيم البحث

اقرأ أيضاً

66 - V. R. Rana 2005
A detailed analysis of X-ray data from ROSAT, ASCA, XMM and RXTE for the asynchronous polar V1432 Aql along with Stokes polarimetry data from SAAO, is presented. Power spectra from long-baseline ROSAT data show a spin period of 12150s along with seve ral system related frequency components. However, the second harmonic of the spin period dominates power spectrum in the XMM data. For the optical circular polarization, the dominant period corresponds to half the spin period. The ROSAT data can be explained as due to accretion onto two hot spots that are not anti-podal. The variations seen in the optical polarization and the ASCA and XMM data suggest the presence of at least three accretion foot prints on the white dwarf surface. Two spectral models, a multi-temperature plasma and a photo-ionized plasma model, are used for spectral study. The RXTE PCA data are used to constrain the white dwarf mass to 1.2$pm$0.1 M_odot using the multi-temperature plasma model. A strong soft X-ray excess (<0.8 keV) in the XMM MOS data is well modeled by a blackbody component having a temperature of 80-90 eV. The plasma emission lines seen at 6.7 and 7.0 keV are well fitted using the multi-temperature plasma model, however an additional Gaussian is needed for the 6.4 keV line. The multi-temperature plasma model requires a homogeneous absorber fully covering the source and a partial absorber covering 65% of the source. The photo-ionized plasma model, with a range of Fe column densities, gives a slightly better overall fit and fits all emission lines. The presence of a strong blackbody component, a spin period of 12150s, modulation of the 6.4 keV line flux with spin period, and a very hard X-ray component suggest that V1432 Aql is a polar with X-ray spectral properties similar to that of a soft intermediate polar.
CD Ind is one of only four confirmed asynchronous polars (APs). APs are strongly magnetic cataclysmic variables of the AM Herculis subclass with the characteristic that their white dwarfs rotate a few per cent out of synchronism with their binary orb it. Theory suggests that nova eruptions disrupt previously synchronized states. Following the eruption, the system is expected to rapidly resynchronize over a timescale of centuries. The other three asynchronous polars - V1432 Aql, BY Cam and V1500 Cyg - have resynchronization time estimates ranging from 100 to more than 3500 years, with all but one being less than 1200 years. We report on the analysis of over 46000 observations of CD Ind taken between 2007 and 2016, combined with previous observations from 1996, and estimate a CD Ind resynchronization time of 6400 +/- 800 years. We also estimate an orbital period of 110.820(1) minutes and a current (2016.4) white dwarf spin period of 109.6564(1) minutes.
The bright Nova Cygni 1975 is a rare nova on a magnetic white dwarf (WD). Later it was found to be an asynchronous polar, now called V1500 Cyg. Our multisite photometric campaign occurring 40 years post eruption covered 26-nights (2015-2017). The ref lection effect from the heated donor has decreased, but still dominates the op- tical radiation with an amplitude ~1^m.5. The 0^m.3 residual reveals cyclotron emission and ellipsoidal variations. Mean brightness modulation from night-to-night is used to measure the 9.6-d spin-orbit beat period that is due to changing accretion geometry including magnetic pole-switching of the flow. By subtracting the orbital and beat frequencies, spin-phase dependent light curves are obtained. The amplitude and profile of the WD spin light curves track the cyclotron emitting accretion regions on the WD and they vary systematically with beat phase. A weak intermittent signal at 0.137613-d is likely the spin period, which is 1.73(1) min shorter than the orbital period. The O-C diagram of light curve maxima displays phase jumps every one-half beat period, a characteristic of asynchronous polars. The first jump we interpret as pole switching between regions separated by 180 deg. Then the spot drifts during ~0.1 beat phase before undergoing a second phase jump between spots separated by less than 180 deg. We trace the cooling of the still hot WD as revealed by the irradiated companion. The post nova evolution and spin-orbit asynchronism of V1500 Cyg continues to be a powerful laboratory for accretion flows onto magnetic white dwarfs.
Near Infrared (NIR) and optical photometry and spectroscopy are presented for the nova V1831 Aquilae, covering the early decline and dust forming phases during the first $sim$90 days after its discovery. The nova is highly reddened due to interstella r extinction. Based solely on the nature of NIR spectrum we are able to classify the nova to be of the Fe II class. The distance and extinction to the nova are estimated to be 6.1 $pm$ 0.5 kpc and $A_{rm v}$ $sim$ 9.02 respectively. Lower limits of the electron density, emission measure and ionized ejecta mass are made from a Case B analysis of the NIR Brackett lines while the neutral gas mass is estimated from the optical [OI] lines. We discuss the cause for a rapid strengthening of the He I 1.0830 $mu$m line during the early stages. V1831 Aql formed a modest amount of dust fairly early ($sim$ 19.2 days after discovery); the dust shell is not seen to be optically thick. Estimates are made of the dust temperature, dust mass and grain size. Dust formation commences around day 19.2 at a condensation temperature of 1461 $pm$ 15 K, suggestive of a carbon composition, following which the temperature is seen to gradually decrease to 950K. The dust mass shows a rapid initial increase which we interpret as being due to an increase in the number of grains, followed by a period of constancy suggesting the absence of grain destruction processes during this latter time. A discussion is made of the evolution of these parameters, including certain peculiarities seen in the grain radius evolution.
Based on XMM--Newton X-ray observations IGR J19552+0044 appears to be either a pre-polar or an asynchronous polar. We conducted follow-up optical observations to identify the sources and periods of variability precisely and to classify this X-ray sou rce correctly. Extensive multicolor photometric and medium- to high-resolution spectroscopy observations were performed and period search codes were applied to sort out the complex variability of the object. We found firm evidence of discording spectroscopic (81.29+/-0.01m) and photometric (83.599+/-0.002m) periods that we ascribe to the white dwarf (WD) spin period and binary orbital period, respectively. This confirms that IGR J19552+0044 is an asynchronous polar. Wavelength-dependent variability and its continuously changing shape point at a cyclotron emission from a magnetic WD with a relatively low magnetic field below 20 MG. The difference between the WD spin period and the binary orbital period proves that IGR J19552+0044 is a polar with the largest known degree of asynchronism (0.97 or 3%).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا