ترغب بنشر مسار تعليمي؟ اضغط هنا

Successes and failures of Hubbard-corrected density functional theory: The case of Mg doped LiCoO$_2$

211   0   0.0 ( 0 )
 نشر من قبل Juan A. Santana
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have evaluated the successes and failures of the Hubbard-corrected density functional theory (DFT+U) approach to study Mg doping of LiCoO$_2$. We computed the effect of the U parameter on the energetic, geometric and electronic properties of two possible doping mechanisms: (1) substitution of Mg onto a Co (or Li) site with an associated impurity state and, (2) formation of impurity-state-free complexes of substitutional Mg and point defects in LiCoO$_2$. We find that formation of impurity states results in changes on the valency of Co in LiCoO$_2$. Variation of the Co U shifts the energy of the impurity state, resulting in energetic, geometric and electronic properties that depend significantly on the specific value of U. In contrast, the properties of the impurity-state-free complexes are insensitive to U. These results identify reasons for the strong dependence on the doping properties on the chosen value of U and for the overall difficulty of achieving agreement with the experimentally known energetic and electronic properties of doped transition metal oxides such as LiCoO$_2$.

قيم البحث

اقرأ أيضاً

The response of a one-dimensional fermion system is investigated using Density Functional Theory (DFT) within the Local Density Approximation (LDA), and compared with exact results. It is shown that DFT-LDA reproduces surprisingly well some of the ch aracteristic features of the Luttinger liquid, namely the vanishing spectral weight of low energy particle-hole excitations, as well as the dispersion of the collective charge excitations. On the other hand, the approximation fails, even qualitatively, for quantities for which backscattering is important, i.e., those quantities which are crucial for an accurate description of transport. In particular, the Drude weight in the presence of a single impurity is discussed.
We present in full detail a newly developed formalism enabling density functional perturbation theory (DFPT) calculations from a DFT+$U$ ground state. The implementation includes ultrasoft pseudopotentials and is valid for both insulating and metalli c systems. It aims at fully exploiting the versatility of DFPT combined with the low-cost DFT+$U$ functional. This allows to avoid computationally intensive frozen-phonon calculations when DFT+$U$ is used to eliminate the residual electronic self-interaction from approximate functionals and to capture the localization of valence electrons e.g. on $d$ or $f$ states. In this way, the effects of electronic localization (possibly due to correlations) are consistently taken into account in the calculation of specific phonon modes, Born effective charges, dielectric tensors and in quantities requiring well converged sums over many phonon frequencies, as phonon density of states and free energies. The new computational tool is applied to two representative systems, namely CoO, a prototypical transition metal monoxide and LiCoO$_2$, a material employed for the cathode of Li-ion batteries. The results show the effectiveness of our formalism to capture in a quantitatively reliable way the vibrational properties of systems with localized valence electrons.
We use dispersion-corrected density-functional theory to determine the relative energies of competing polytypes of bulk layered hexagonal post-transition-metal chalcogenides, to search for the most stable structures of these potentially technological ly important semiconductors. We show that there is some degree of consensus among dispersion-corrected exchange-correlation functionals regarding the energetic orderings of polytypes, but we find that for each material there are multiple stacking orders with relative energies of less than 1 meV per monolayer unit cell, implying that stacking faults are expected to be abundant in all post-transition-metal chalcogenides. By fitting a simple model to all our energy data, we predict that the most stable hexagonal structure has P$6_3$/mmc space group in each case, but that the stacking order differs between GaS, GaSe, GaTe, and InS on the one hand and InSe and InTe on the other. At zero pressure, the relative energies obtained with different functionals disagree by around 1-5 meV per monolayer unit cell, which is not sufficient to identify the most stable structure unambiguously; however, multi-GPa pressures reduce the number of competing phases significantly. At higher pressures, an AB$$-stacked structure of the most stable monolayer polytype is found to be the most stable bulk structure; this structure has not been reported in experiments thus far.
Using the first-principles density-functional theory plan-wave pseudopotential method, we investigate the structure and magnetism in 25% Mn substitutive and interstitial doped monoclinic, tetragonal and cubic ZrO2 systematically. Our studies show tha t the introduction of Mn impurities into ZrO2 not only stabilizes the high temperature phase, but also endows ZrO2 with magnetism. Based on the simple crystal field theory (CFT), we discuss the origination of magnetism in Mn doped ZrO2. Moreover, we discuss the effect of electron donor on magnetic semiconductors, and the possibility as electronic structure modulator.
Recent experiments demonstrate the synthesis of 2D black arsenic exhibits excellent electronic and transport properties for nanoscale device applications. Herein, we study by first principle calculations density functional theory together with non eq uilibrium Greens function methods, the structural, electronic, adsorption strength, charge transfer, and transport properties of five gas molecules CO, CO2, NO, NO2, and NH3 on a monolayer of black arsenic. Our findings suggest optimum sensing performance of black arsenic that can even surpass that of other 2D material such as graphene. Further, we note the optimum adsorption sites for all the five gas molecules on the black arsenic and significant charge transfer between the gas molecules and black arsenic are responsible for optimum adsorption strength. Particularly, the significant charger transfer is a sign that the interaction between the target gas molecule and nanoscale device is sufficient to yield noticeable changes in the electronic transport properties. As a proof of principle, we have examined the sensitivity of a modeled nano-scale device towards CO, CO2, NO, NO2, and NH3 gas molecules, indicating that it is indeed possible to reliably detect all the five gas molecules. Thus, based on all these findings, such as sensitivity and selectivity to all the five gas molecules adsorption make black arsenic a promising material as an optimum gas sensor nano-scale device.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا