ترغب بنشر مسار تعليمي؟ اضغط هنا

EEG source localization using a sparsity prior based on Brodmann areas

108   0   0.0 ( 0 )
 نشر من قبل Rajib Rana
 تاريخ النشر 2014
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Localizing the sources of electrical activity in the brain from Electroencephalographic (EEG) data is an important tool for non-invasive study of brain dynamics. Generally, the source localization process involves a high-dimensional inverse problem that has an infinite number of solutions and thus requires additional constraints to be considered to have a unique solution. In the context of EEG source localization, we propose a novel approach that is based on dividing the cerebral cortex of the brain into a finite number of Functional Zones which correspond to unitary functional areas in the brain. In this paper we investigate the use of Brodmanns areas as the Functional Zones. This approach allows us to apply a sparsity constraint to find a unique solution for the inverse EEG problem. Compared to previously published algorithms which use different sparsity constraints to solve this problem, the proposed method is potentially more consistent with the known sparsity profile of the human brain activity and thus may be able to ensure better localization. Numerical experiments are conducted on a realistic head model obtained from segmentation of MRI images of the head and includes four major compartments namely scalp, skull, cerebrospinal fluid (CSF) and brain with relative conductivity values. Three different electrode setups are tested in the numerical experiments.



قيم البحث

اقرأ أيضاً

Purpose: Localizing the sources of electrical activity from electroencephalographic (EEG) data has gained considerable attention over the last few years. In this paper, we propose an innovative source localization method for EEG, based on Sparse Baye sian Learning (SBL). Methods: To better specify the sparsity profile and to ensure efficient source localization, the proposed approach considers grouping of the electrical current dipoles inside human brain. SBL is used to solve the localization problem in addition with imposed constraint that the electric current dipoles associated with the brain activity are isotropic. Results: Numerical experiments are conducted on a realistic head model that is obtained by segmentation of MRI images of the head and includes four major components, namely the scalp, the skull, the cerebrospinal fluid (CSF) and the brain, with appropriate relative conductivity values. The results demonstrate that the isotropy constraint significantly improves the performance of SBL. In a noiseless environment, the proposed method was 1 found to accurately (with accuracy of >75%) locate up to 6 simultaneously active sources, whereas for SBL without the isotropy constraint, the accuracy of finding just 3 simultaneously active sources was <75%. Conclusions: Compared to the state-of-the-art algorithms, the proposed method is potentially more consistent in specifying the sparsity profile of human brain activity and is able to produce better source localization for EEG.
The present study evaluated the capacity of a semi-closed, tubular horizontal photobioreactor (PBR) to remove pesticides from agricultural run-off. The study was carried out in July to study its efficiency under the best conditions (highest solar irr adiation). A total of 51 pesticides, including 10 transformation products, were selected and investigated based on their consumption rate and environmental relevance. Sixteen of them were detected in the agricultural run-off, and the estimated removal efficiencies ranged from negative values, obtained for 3 compounds, namely terbutryn, diuron, and imidacloprid, to 100%, achieved for 10 compounds. The acidic herbicide MCPA was removed by 88% on average, and the insecticides 2,4-D and diazinon showed variable removals, between 100% and negative values. The environmental risk associated with the compounds still present in the effluent of the PBR was evaluated using hazard quotients (HQs), calculated using the average and highest measured concentrations of the compounds. HQ values > 10 (meaning high risk) were obtained for imidacloprid (21), between 1 and 10 (meaning moderate risk) for 2,4-D (2.8), diazinon (4.6) and terbutryn (1.5), and < 1 (meaning low risk) for the remaining compounds diuron, linuron, and MCPA. The PBR treatment yielded variable removals depending on the compound, similar to conventional wastewater treatment plants. This study provides new data on the capacity of icroalgae-based treatment systems to eliminate a wide range of priority pesticides under real/environmental conditions.
181 - Avni Pllana , Herbert Bauer 2011
In this paper we present a new localization method SMS-LORETA (Simultaneous Multiple Sources- Low Resolution Brain Electromagnetic Tomography), capable to locate efficiently multiple simultaneous sources. The new method overcomes some of the drawback s of sLORETA (standardized Low Resolution Brain Electromagnetic Tomography). The key idea of the new method is the iterative search for current dipoles, harnessing the low error single source localization performance of sLORETA. An evaluation of the new method by simulation has been enclosed.
Source localization in EEG represents a high dimensional inverse problem, which is severely ill-posed by nature. Fortunately, sparsity constraints have come into rescue as it helps solving the ill-posed problems when the signal is sparse. When the si gnal has a structure such as block structure, consideration of block sparsity produces better results. Knowing sparse Bayesian learning is an important member in the family of sparse recovery, and a superior choice when the projection matrix is highly coherent (which is typical the case for EEG), in this work we evaluate the performance of block sparse Bayesian learning (BSBL) method for EEG source localization. It is already accepted by the EEG community that a group of dipoles rather than a single dipole are activated during brain activities; thus, block structure is a reasonable choice for EEG. In this work we use two definitions of blocks: Brodmann areas and automated anatomical labelling (AAL), and analyze the reconstruction performance of BSBL methodology for them. A realistic head model is used for the experiment, which was obtained from segmentation of MRI images. When the number of simultaneously active blocks is 2, the BSBL produces overall localization accuracy of less than 5 mm without the presence of noise. The presence of more than 3 simultaneously active blocks and noise significantly affect the localization performance. Consideration of AAL based blocks results more accurate source localization in comparison to Brodmann area based blocks.
EEG source localization is an important technical issue in EEG analysis. Despite many numerical methods existed for EEG source localization, they all rely on strong priors and the deep sources are intractable. Here we propose a deep learning framewor k using spatial basis function decomposition for EEG source localization. This framework combines the edge sparsity prior and Gaussian source basis, called Edge Sparse Basis Network (ESBN). The performance of ESBN is validated by both synthetic data and real EEG data during motor tasks. The results suggest that the supervised ESBN outperforms the traditional numerical methods in synthetic data and the unsupervised fine-tuning provides more focal and accurate localizations in real data. Our proposed deep learning framework can be extended to account for other source priors, and the real-time property of ESBN can facilitate the applications of EEG in brain-computer interfaces and clinics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا