ترغب بنشر مسار تعليمي؟ اضغط هنا

Equivalence of the Traditional and Non-Standard Definitions of Concepts from Real Analysis

208   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف John Cowles




اسأل ChatGPT حول البحث

ACL2(r) is a variant of ACL2 that supports the irrational real and complex numbers. Its logical foundation is based on internal set theory (IST), an axiomatic formalization of non-standard analysis (NSA). Familiar ideas from analysis, such as continuity, differentiability, and integrability, are defined quite differently in NSA-some would argue the NSA definitions are more intuitive. In previous work, we have adopted the NSA definitions in ACL2(r), and simply taken as granted that these are equivalent to the traditional analysis notions, e.g., to the familiar epsilon-delta definitions. However, we argue in this paper that there are circumstances when the more traditional definitions are advantageous in the setting of ACL2(r), precisely because the traditional notions are classical, so they are unencumbered by IST limitations on inference rules such as induction or the use of pseudo-lambda terms in functional instantiation. To address this concern, we describe a formal proof in ACL2(r) of the equivalence of the traditional and non-standards definitions of these notions.


قيم البحث

اقرأ أيضاً

An attempt at unifying logic and functional programming is reported. As a starting point, we take the view that logic programs are not about logic but constitute inductive definitions of sets and relations. A skeletal language design based on these c onsiderations is sketched and a prototype implementation discussed.
76 - Francesco Dagnino 2018
We introduce a generalized notion of inference system to support more flexible interpretations of recursive definitions. Besides axioms and inference rules with the usual meaning, we allow also coaxioms, which are, intuitively, axioms which can only be applied at infinite depth in a proof tree. Coaxioms allow us to interpret recursive definitions as fixed points which are not necessarily the least, nor the greatest one, whose existence is guaranteed by a smooth extension of classical results. This notion nicely subsumes standard inference systems and their inductive and coinductive interpretation, thus allowing formal reasoning in cases where the inductive and coinductive interpretation do not provide the intended meaning, but are rather mixed together.
We discuss the topic of unsatisfiability proofs in SMT, particularly with reference to quantifier free non-linear real arithmetic. We outline how the methods here do not admit trivial proofs and how past formalisation attempts are not sufficient. We note that the new breed of local search based algorithms for this domain may offer an easier path forward.
This volume contains the proceedings of MARS 2017, the second workshop on Models for Formal Analysis of Real Systems, held on April 29, 2017 in Uppala, Sweden, as an affiliated workshop of ETAPS 2017, the European Joint Conferences on Theory and Prac tice of Software. The workshop emphasises modelling over verification. It aims at discussing the lessons learned from making formal methods for the verification and analysis of realistic systems. Examples are: (1) Which formalism is chosen, and why? (2) Which abstractions have to be made and why? (3) How are important characteristics of the system modelled? (4) Were there any complications while modelling the system? (5) Which measures were taken to guarantee the accuracy of the model? We invited papers that present full models of real systems, which may lay the basis for future comparison and analysis. An aim of the workshop is to present different modelling approaches and discuss pros and cons for each of them. Alternative formal descriptions of the systems presented at this workshop are encouraged, which should foster the development of improved specification formalisms.
57 - Mark Reynolds 2016
Propositional linear time temporal logic (LTL) is the standard temporal logic for computing applications and many reasoning techniques and tools have been developed for it. Tableaux for deciding satisfiability have existed since the 1980s. However, t he tableaux for this logic do not look like traditional tree-shaped tableau systems and their processing is often quite complicated. We present a new simple traditional-style tree-shaped tableau for LTL and prove that it is sound and complete. As well as being simple to understand, to introduce to students and to use manually, it also seems simple to implement and promises to be competitive in its automation. It is particularly suitable for parallel implementations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا