ﻻ يوجد ملخص باللغة العربية
Inelastic neutron scattering (INS) experiments under applied magnetic field at low temperatures show detailed low lying magnetic excitations in the so called tridiminshed iron icosahedron magnetic molecule. The magnetic molecule consists of nine iron Fe$^{3+}$ ($s = 5/2$) and three phosphorous atoms that are situated on the twelve vertices of a nearly perfect icosahedron. The three phosphorous atoms form a plane that separates the iron cluster into two weakly coupled three- and six-ion fragments, {Fe$_3$} and {Fe$_6$}, respectively. The magnetic field INS results exhibit an $S=1/2$ ground state expected from a perfect equilateral triangle of the {Fe$_3$} triad with a powder averaged $g$-value $=2.00$. Two sets of triplet excitations whose temperature and magnetic field dependence indicate an $S=0$ ground state with two non-degenerate $S=1$ states are attributed to the {Fe$_6$} fragment. The splitting may result from a finite coupling between the two fragments, single-ion anisotropy, antisymmetric exchange couplings, or from magnetic frustration of its triangular building blocks.
We present data on the magnetic and magneto-elastic coupling in the hexagonal multiferroic manganite LuMnO3 from inelastic neutron scattering, magnetization and thermal expansion measurements. We measured the magnon dispersion along the main symmetry
We report inelastic neutron scattering measurements of the magnetic excitations in SrFe2As2, the parent of a family of iron-based superconductors. The data extend throughout the Brillouin zone and up to energies of ~260meV. An analysis with the local
We employ magnetic small-angle neutron scattering to investigate the magnetic interactions in $(Fe_{0.7}Ni_{0.3})_{86}B_{14}$ alloy, a HiB-NANOPERM-type soft magnetic nanocrystalline material, which exhibits an ultrafine microstructure with an averag
We present neutron scattering spectra taken from a single crystal of Na0.75CoO2, the precursor to a novel cobalt-oxide superconductor. The data contain a prominent inelastic signal at low energies (~10 meV), which is localized in wavevector about the
We measured two magnetic modes with finite and discrete energies in an antiferromagnetic ordered phase of a geometrically frustrated magnet MgCr2O4 by single-crystal inelastic neutron scattering, and clarified the spatial spin correlations of the two