ﻻ يوجد ملخص باللغة العربية
The coupled electronic-structural modulations of the ligand states in IrTe$_2$ have been studied by x-ray absorption spectroscopy (XAS) and resonant elastic x-ray scattering (REXS). Distinctive pre-edge structures are observed at the Te-$M_{4,5}$ (3$d$ $rightarrow$ 5$p$) absorption edge, indicating the presence of a Te 5$p$-Ir 5$d$ covalent state near the Fermi level. An enhancement of the REXS signal near the Te 3$d$ $rightarrow$ 5$p$ resonance at the $Q!=!(1/5,0,-1/5)$ superlattice reflection is observed below the structural transition temperature $T_ssim$ 280 K. The analysis of the energy-dependent REXS lineshape reveals the key role played by the spatial modulation of the covalent Te 5$p$-Ir 5$d$ bond-density in driving the stripe-like order in IrTe$_2$, and uncovers its coupling with the charge and/or orbital order at the Ir sites. The similarity between these findings and the charge-ordering phenomenology observed in the high-T$_c$ superconducting cuprates suggests that the iridates may harbor similar exotic phases.
Superconductivity in the vicinity of a competing electronic order often manifests itself with a superconducting dome, centred at a presumed quantum critical point in the phase diagram. This common feature, found in many unconventional superconductors
Layered 5d transition metal dichalcogenide (TMD) IrTe2 is distinguished from the traditional TMDs (such as NbSe2) by the existence of multiple CDW-like stripe phases and superconductivity at low temperatures. Despite of intensive studies, there is st
The charge and spin dynamics of the structurally simplest iron-based superconductor, FeSe, may hold the key to understanding the physics of high temperature superconductors in general. Unlike the iron pnictides, FeSe lacks long range magnetic order i
Unidirectional (stripe) charge-density-wave order has now been established as a ubiquitous feature in the phase diagram of the cuprate high temperature (HT) superconductors, where it generally competes with superconductivity (SC). None-the-less, on t
A microscopic understanding of the strongly correlated physics of the cuprates must account for the translational and rotational symmetry breaking that is present across all cuprate families, commonly in the form of stripes. Here we investigate emerg