ﻻ يوجد ملخص باللغة العربية
This manuscript presents the general approach to the understanding of the connection between bonding mechanism and electronic structure of graphene on metals. To demonstrate its validity, two limiting cases of the weakly and strongly bonded graphene on Al(111) and Ni(111) are considered, where the Dirac cone is preserved or fully destroyed, respectively. Furthermore, the electronic structure, i. e. doping level, hybridization effects, as well as a gap formation at the Dirac point of the intermediate system, graphene/Cu(111), is fully understood in the framework of the proposed approach. This work summarises the long-term debates regarding connection of the bonding strength and the valence band modification in the graphene/metal systems and paves a way for the effective control of the electronic states of graphene in the vicinity of the Fermi level.
Realization of graphene moire superstructures on the surface of 4d and 5d transition metals offers templates with periodically modulated electron density, which is responsible for a number of fascinating effects, including the formation of quantum do
Understanding the nature of the interaction at the graphene/metal interfaces is the basis for graphene-based electron- and spin-transport devices. Here we investigate the hybridization between graphene- and metal-derived electronic states by studying
Developing characterization techniques and analysis methods adapted to the investigation of nanoparticles (NPs) is of fundamental importance considering the role of these materials in many fields of research. The study of actinide based NPs, despite
Recent transport measurements on thin graphite films grown on SiC show large coherence lengths and anomalous integer quantum Hall effects expected for isolated graphene sheets. This is the case eventhough the layer-substrate epitaxy of these films im
Surface-assisted polymerization of molecular monomers into extended chains can be used as the seed of graphene nanoribbon (GNR) formation, resulting from a subsequent cyclo-dehydrogenation process. By means of valence-band photoemission and ab-initio