ترغب بنشر مسار تعليمي؟ اضغط هنا

Multipulse Double-Quantum Magnetometry With Near-Surface Nitrogen Vacancy Centers

174   0   0.0 ( 0 )
 نشر من قبل Harry Jonathon Mamin
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss multipulse magnetometry that exploits all three magnetic sublevels of the S=1 nitrogen-vacancy center in diamond to achieve enhanced magnetic field sensitivity. Based on dual frequency microwave pulsing, the scheme works in arbitrary magnetic bias fields and is twice as sensitive to ac magnetic fields as conventional two-level magnetometry. We derive the spin evolution operator for dual frequency microwave excitation and show its effectiveness for double-quantum state swaps. Using multipulse sequences of up to 128 pulses under optimized conditions, we show enhancement of the SNR by up to a factor of 2 in detecting NMR statistical signals, with a 4 times enhancement theoretically possible.



قيم البحث

اقرأ أيضاً

Shallow nitrogen-vacancy (NV) centers in diamond are promising for nano-magnetometry for they can be placed proximate to targets. To study the intrinsic magnetic properties, zero-field magnetometry is desirable. However, for shallow NV centers under zero field, the strain near diamond surfaces would cause level anti-crossing between the spin states, leading to clock transitions whose frequencies are insensitive to magnetic signals. Furthermore, the charge noises from the surfaces would induce extra spin decoherence and hence reduce the magnetic sensitivity. Here we demonstrate that the relatively strong hyperfine coupling (130 MHz) from a first-shell 13C nuclear spin can provide an effective bias field to an NV center spin so that the clock-transition condition is broken and the charge noises are suppressed. The hyperfine bias enhances the dc magnetic sensitivity by a factor of 22 in our setup. With the charge noises suppressed by the strong hyperfine field, the ac magnetometry under zero field also reaches the limit set by decoherence due to the nuclear spin bath. In addition, the 130 MHz splitting of the NV center spin transitions allows relaxometry of magnetic noises simultaneously at two well-separated frequencies (~2.870 +/- 0.065 GHz), providing (low-resolution) spectral information of high-frequency noises under zero field. The hyperfine-bias enhanced zero-field magnetometry can be combined with dynamical decoupling to enhance single-molecule magnetic resonance spectroscopy and to improve the frequency resolution in nanoscale magnetic resonance imaging.
We use magnetic-field-dependent features in the photoluminescence of negatively charged nitrogen-vacancy centers to measure magnetic fields without the use of microwaves. In particular, we present a magnetometer based on the level anti-crossing in th e triplet ground state at 102.4 mT with a demonstrated noise floor of 6 nT/$sqrt{text{Hz}}$, limited by the intensity noise of the laser and the performance of the background-field power supply. The technique presented here can be useful in applications where the sensor is placed closed to conductive materials, e.g. magnetic induction tomography or magnetic field mapping, and in remote-sensing applications since principally no electrical access is needed.
We show that electric field noise from surface charge fluctuations can be a significant source of spin decoherence for near-surface nitrogen-vacancy (NV) centers in diamond. This conclusion is based on the increase in spin coherence observed when the diamond surface is covered with high-dielectric-constant liquids, such as glycerol. Double resonance experiments show that improved coherence occurs even though the coupling to nearby electron spins is unchanged when the liquid is applied. Multipulse spin echo experiments reveal the effect of glycerol on the spectrum of NV frequency noise.
104 - Eisuke Abe , Kento Sasaki 2018
This tutorial article provides a concise and pedagogical overview on negatively-charged nitrogen-vacancy (NV) centers in diamond. The research on the NV centers has attracted enormous attention for its application to quantum sensing, encompassing the areas of not only physics and applied physics but also chemistry, biology and life sciences. Nonetheless, its key technical aspects can be understood from the viewpoint of magnetic resonance. We focus on three facets of this ever-expanding research field, to which our viewpoint is especially relevant: microwave engineering, materials science, and magnetometry. In explaining these aspects, we provide a technical basis and up-to-date technologies for the research on the NV centers.
493 - Dolev Bluvstein , Zhiran Zhang , 2018
The charge degree of freedom in solid-state defects fundamentally underpins the electronic spin degree of freedom, a workhorse of quantum technologies. Here we study charge state properties of individual near-surface nitrogen-vacancy (NV) centers in diamond, where NV$^{-}$ hosts the metrologically relevant electron spin. We find that NV$^{-}$ initialization fidelity varies between individual centers and over time, and we alleviate the deleterious effects of reduced NV$^{-}$ initialization fidelity via logic-based initialization. We also find that NV$^{-}$ can ionize in the dark, which compromises spin measurements but is mitigated by measurement protocols we present here. We identify tunneling to a single, local electron trap as the mechanism for ionization in the dark and we develop NV-assisted techniques to control and readout the trap charge state. Our understanding and command of the NVs local electrostatic environment will simultaneously guide materials design and provide novel functionalities with NV centers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا