ترغب بنشر مسار تعليمي؟ اضغط هنا

A semi-parametric Bayesian model of inter- and intra-examiner agreement for periodontal probing depth

542   0   0.0 ( 0 )
 نشر من قبل E. G. Hill
 تاريخ النشر 2014
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Periodontal probing depth is a measure of periodontitis severity. We develop a Bayesian hierarchical model linking true pocket depth to both observed and recorded values of periodontal probing depth, while permitting correlation among measures obtained from the same mouth and between duplicate examiners measures obtained at the same periodontal site. Periodontal site-specific examiner effects are modeled as arising from a Dirichlet process mixture, facilitating identification of classes of sites that are measured with similar bias. Using simulated data, we demonstrate the models ability to recover examiner site-specific bias and variance heterogeneity and to provide cluster-adjusted point and interval agreement estimates. We conclude with an analysis of data from a probing depth calibration training exercise.



قيم البحث

اقرأ أيضاً

Preventing periodontal diseases (PD) and maintaining the structure and function of teeth are important goals for personal oral care. To understand the heterogeneity in patients with diverse PD patterns, we develop BAREB, a Bayesian repulsive bicluste ring method that can simultaneously cluster the PD patients and their tooth sites after taking the patient- and site- level covariates into consideration. BAREB uses the determinantal point process (DPP) prior to induce diversity among different biclusters to facilitate parsimony and interpretability. Since PD progression is hypothesized to be spatially-referenced, BAREB factors in the spatial dependence among tooth sites. In addition, since PD is the leading cause for tooth loss, the missing data mechanism is non-ignorable. Such nonrandom missingness is incorporated into BAREB. For the posterior inference, we design an efficient reversible jump Markov chain Monte Carlo sampler. Simulation studies show that BAREB is able to accurately estimate the biclusters, and compares favorably to alternatives. For real world application, we apply BAREB to a dataset from a clinical PD study, and obtain desirable and interpretable results. A major contribution of this paper is the Rcpp implementation of BAREB, available at https://github.com/YanxunXu/ BAREB.
Mortality is different across countries, states and regions. Several empirical research works however reveal that mortality trends exhibit a common pattern and show similar structures across populations. The key element in analyzing mortality rate is a time-varying indicator curve. Our main interest lies in validating the existence of the common trends among these curves, the similar gender differences and their variability in location among the curves at the national level. Motivated by the empirical findings, we make the study of estimating and forecasting mortality rates based on a semi-parametric approach, which is applied to multiple curves with the shape-related nonlinear variation. This approach allows us to capture the common features contained in the curve functions and meanwhile provides the possibility to characterize the nonlinear variation via a few deviation parameters. These parameters carry an instructive summary of the time-varying curve functions and can be further used to make a suggestive forecast analysis for countries with barren data sets. In this research the model is illustrated with mortality rates of Japan and China, and extended to incorporate more countries.
Dynamic Contrast-enhanced Magnetic Resonance Imaging (DCE-MRI) is an important tool for detecting subtle kinetic changes in cancerous tissue. Quantitative analysis of DCE-MRI typically involves the convolution of an arterial input function (AIF) with a nonlinear pharmacokinetic model of the contrast agent concentration. Parameters of the kinetic model are biologically meaningful, but the optimization of the non-linear model has significant computational issues. In practice, convergence of the optimization algorithm is not guaranteed and the accuracy of the model fitting may be compromised. To overcome this problems, this paper proposes a semi-parametric penalized spline smoothing approach, with which the AIF is convolved with a set of B-splines to produce a design matrix using locally adaptive smoothing parameters based on Bayesian penalized spline models (P-splines). It has been shown that kinetic parameter estimation can be obtained from the resulting deconvolved response function, which also includes the onset of contrast enhancement. Detailed validation of the method, both with simulated and in vivo data, is provided.
A utility-based Bayesian population finding (BaPoFi) method was proposed by Morita and Muller (2017, Biometrics, 1355-1365) to analyze data from a randomized clinical trial with the aim of identifying good predictive baseline covariates for optimizin g the target population for a future study. The approach casts the population finding process as a formal decision problem together with a flexible probability model using a random forest to define a regression mean function. BaPoFi is constructed to handle a single continuous or binary outcome variable. In this paper, we develop BaPoFi-TTE as an extension of the earlier approach for clinically important cases of time-to-event (TTE) data with censoring, and also accounting for a toxicity outcome. We model the association of TTE data with baseline covariates using a semi-parametric failure time model with a Polya tree prior for an unknown error term and a random forest for a flexible regression mean function. We define a utility function that addresses a trade-off between efficacy and toxicity as one of the important clinical considerations for population finding. We examine the operating characteristics of the proposed method in extensive simulation studies. For illustration, we apply the proposed method to data from a randomized oncology clinical trial. Concerns in a preliminary analysis of the same data based on a parametric model motivated the proposed more general approach.
Disease surveillance is essential not only for the prior detection of outbreaks but also for monitoring trends of the disease in the long run. In this paper, we aim to build a tactical model for the surveillance of dengue, in particular. Most existin g models for dengue prediction exploit its known relationships between climate and socio-demographic factors with the incidence counts, however they are not flexible enough to capture the steep and sudden rise and fall of the incidence counts. This has been the motivation for the methodology used in our paper. We build a non-parametric, flexible, Gaussian Process (GP) regression model that relies on past dengue incidence counts and climate covariates, and show that the GP model performs accurately, in comparison with the other existing methodologies, thus proving to be a good tactical and robust model for health authorities to plan their course of action.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا